| Agenda AT

Karlsruhe Institute of Technology

« Detect platforms and devices and sum up two matrices (40m)
« Presentation: Optimization strategies (40m)
« Optimize matrix transposition (20m)
* Implement vector dot-product (30m)
« Try using NVIDIA SIMD instructions (20m)
« Compute Pi using monte-carlo (20m)
« Matrix multiplication (up to you...)
— Support big matrices

Institute for Data Processing and

1 S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I Working with samples AT

Karlsruhe Institute of Technology

« Go to ~/ksetal/tutorials

« Enter directory with tutorial (0_sum first)
« Type cmake .

 Type make

Institute for Data Processing and

2 S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I Detect OpenCL platforms AT

Karlsruhe Institute of Technology

» Detecting platforms
» Find each platform name and version
» Functions: clGetPlatformIDs, clGetPlatforminfo
» Find devices
» Find each device name, number of compute units, amount of memory,
and maximum size of work-group
» Functions: clGetDevicesIDs, clGetDevicelnfo

» There should be two platforms. NVIDIA graphic card has 16 compute units, 1535
MB of memory, and supports up to 1024 work items per group

Institute for Data Processing and

3 S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I Build sum.cl and print results AT

Karlsruhe Institute of Technology

» [nitialize OpenCL context
» Functions: clCreateContext
» Load application from sum.cl into the C-string
» Build application
» Functions: clCreateProgramWithSource, clBuildProgram
» Wait until build is finished
» Functions: clGetProgramBuildinfo
» Print build log
» Functions: clGetProgramBuildinfo
»You should see something like:

ptxas info : Compiling entry function 'add’ for 'sm_20'

ptxas info : Function properties for add

0 bytes stack frame, O bytes spill stores, 0 bytes spill loads
ptxas info : Used 5 registers, 44 bytes cmem]0]

ptxas info : Compiling entry function 'add_images' for 'sm_20’
ptxas info : Function properties for add_images

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 2 registers, 36 bytes cmem][0]

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

4 S. Chilingaryan et. all



I Sum 2 matrices on GPU QAT

Karlsruhe Institute of Technology

» Generate two single-precision square matrices (with a side multiple of 16) and fill
them random numbers.
» Create a command queue (clCreateCommandQueue)
» Allocate memory on GPU and copy data
» Functions: clCreateBuffer, clEnqueueWriteBuffer
» Create kernel and set the parameters
» Functions: clCreateKernel, clSetKernelArg
» Enqueue kernel, wait for completion, and measure run time
» Functions: clEnqueueNDRangeKernel, clWaitForEvents,
clGetEventProfilinginfo
» Get results back
» Functions: clEnqueueReadBuffer
» Sum matrices on CPU and measure maximal difference between values
computed on CPU and GPU

Institute for Data Processing and

5 S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I Access input data using textures AT

Karlsruhe Institute of Technology

» Replace buffers with images and change allocation and copy functions
» Functions: clCreatelmage2D, clEnqueueWritelmage
» Write another kernel which is working with images instead of buffers and
instantiate it in C-code
» In the kernel the images have image2d _t type
» Toread from image use read_imagef
» Sample may be set to: CLK_NORMALIZED COORDS FALSE |
CLK_ADDRESS CLAMP | CLK_FILTER NEAREST
» Check if the results are still correct

Institute for Data Processing and

6 S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I Optimize matrix transposition QAT

Karlsruhe Institute of Technology

» Unoptimized version is in 1_transpose
» Original performance is about 30 GB/s
» Use local memory to coalescence accesses to global memory
» Kernel memory is allocated using clSetKernelArg with NULL passed as last
argument. In the kernel the pointer to shared memory is declared with
__local keyword.
» The provided skeleton passes 2 * get local _size(0) * get local _size(0) *
sizeof(float) bytes of local memory to kernel
» Try to prevent local memory bank conflicts
» Expected performance is about 50 GB/s
» Verify that stored results (result-transpose.out) have not changed

Institute for Data Processing and

7 S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I Optimize vector dot product QAT

Karlsruhe Institute of Technology

» Unoptimized version is in 2_dotproduct
» Just uses a single work-item for computations
» get local_size(0) * sizeof(float) bytes of local memory is provided
» size * sizeof(float) bytes of global memory is provided
» Original performance is about 0.12 GB/s
» Use multiple work-items while there is enough independent data
» Remember to coalescence accesses to global memory
» Sum up work-group results in shared memory
» barrier(CLK_LOCAL_MEM_FENCE) is used to synchronize work-items in
the group (all local memory writes completed before executing anything
beyond this point in the code)
» Remember about local memory bank conflicts
» Get final results in the global memory
» barrier(CLK_GLOBAL_MEM_FENCE) is used to synchronize work-items
in the group (all global memory writes completed before executing anything
beyond this point in the code)
» Expected performance is about 100 GB/s
» Verify printed result

Institute for Data Processing and

8 S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I NVIDIA Video SIMD instructions QAT

Karlsruhe Institute of Technology

The instruction was introduced in Kepler architecture and code
will only work on ipepdvcompute2.ka.fzk.de

» Unoptimized version is in 3_simd
» The goal is to compute a vector each element of which is absolute
difference of two input vectors (uint8 t data type).
» The provided version processes all bytes individually.
» The performance is about 40 GB/s
» Modify the source to execute a single work-item per 4 elements.
» Modify kernel to work with 32 bit integers
» Verify that results are still correct
» Modify kernel to use NVIDIA SIMD instruction (vabsdiff4)
» Inline assembler is used for this purpose (gcc syntax)
» You specify NVIDIA instruction along with considered data types and
provided the list of input and output variables
» Verify that stored results (result-diff.out) have not changed
» Expected performance is 80 GB/s

asm("vabsdiff4.u32.u32.u32 %0, %1, %2, %0;" : "=r"(out) : "r"(in1), "r"(in2));

Institute for Data Processing and

9 S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I Compute pi with monte-carlo QAT

Karlsruhe Institute of Technology

» Skeleton is in 4_pi
» There is kernel stub which provides random numbers using random123
library
» At each iteration you will provide two pairs of random numbers in a and b
» get local _size(0) * sizeof(long) bytes of local memory is provided
» get_num_groups(0) * sizeof(long) bytes of global memory is provided
» Compute monte-carlo hits in local variable (i.e. then points a and b are in inside
circle with radius 1). Then, use the same reduction scheme as in vector dot-
product. Return total number of hits by all work items in the result. If correct
number of hits returned, the approximation of pi will be printed.
» Expected performance is about 6 giga-tries/s

Institute for Data Processing and

10 S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



I Matrix multiplication AT

Karlsruhe Institute of Technology

» Stub is in 5_matrix
» Intel MKL (CPU) version gives about 70 Gflop/s on ipepdvcompute
» clAMDBIas (GPU) produces about 280 Gflop/s
» Optimize
» Consider square matrices with side multiple of whatever you like
» Basic implementation
» Use local memory
» Process multiple points per work-item
» Use pinned memory
» Use queues to add parallelism (multiple matrices)
» Try using textures to enhance cache hits
» Support arbitrary matrix sizes
» Support big matrices
» Compute big matrices using multiple GPUs
» Run application with environmental variable CUDA_VISIBLE DEVICES
set to “1,2,3,4,5,6,7,8” to have more GPUs
» The simple version will produce about 70 Gflop/s, the optimized (single GPU)
may go as far as 700 Gflop/s excluding transfers. Interleaving transfers and
computations may give about 500 Gflop/s (multiple matrix case).

Institute for Data Processing and

1 1 S. Chilingaryan et. all Electronics

Karlsruhe Institute of Technology



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

