
S. Chilingaryan et. all1 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Agenda

• Detect platforms and devices and sum up two matrices (40m)
• Presentation: Optimization strategies (40m)
• Optimize matrix transposition (20m)
• Implement vector dot-product (30m)
• Try using NVIDIA SIMD instructions (20m)
• Compute Pi using monte-carlo (20m)
• Matrix multiplication (up to you...)

– Support big matrices



S. Chilingaryan et. all2 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Working with samples

• Go to ~/kseta/tutorials
• Enter directory with tutorial (0_sum first)
• Type cmake .
• Type make



S. Chilingaryan et. all3 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Detect OpenCL platforms

Detecting platforms
Find each platform name and version
Functions: clGetPlatformIDs, clGetPlatformInfo
Find devices

Find each device name, number of compute units, amount of memory, 
and maximum size of work-group
Functions: clGetDevicesIDs, clGetDeviceInfo

There should be two platforms. NVIDIA graphic card has 16 compute units, 1535 
MB of memory, and supports up to 1024 work items per group 



S. Chilingaryan et. all4 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Build sum.cl and print results

Initialize OpenCL context
Functions: clCreateContext

Load application from sum.cl into the C-string
Build application

Functions: clCreateProgramWithSource, clBuildProgram
Wait until build is finished

Functions: clGetProgramBuildInfo
Print build log

Functions: clGetProgramBuildInfo
You should see something like: 

ptxas info    : Compiling entry function 'add' for 'sm_20'
ptxas info    : Function properties for add
 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info    : Used 5 registers, 44 bytes cmem[0]
ptxas info    : Compiling entry function 'add_images' for 'sm_20'
ptxas info    : Function properties for add_images
 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info    : Used 2 registers, 36 bytes cmem[0]



S. Chilingaryan et. all5 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Sum 2 matrices on GPU

Generate two single-precision square matrices (with a side multiple of 16) and fill 
them random numbers.

Create a command queue (clCreateCommandQueue)
Allocate memory on GPU and copy data

Functions: clCreateBuffer, clEnqueueWriteBuffer
Create kernel and set the parameters

Functions: clCreateKernel, clSetKernelArg
Enqueue kernel, wait for completion, and measure run time

Functions: clEnqueueNDRangeKernel, clWaitForEvents, 
clGetEventProfilingInfo

Get results back 
Functions: clEnqueueReadBuffer

Sum matrices on CPU and measure maximal difference between values 
computed on CPU and GPU



S. Chilingaryan et. all6 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Access input data using textures

Replace buffers with images and change allocation and copy functions
Functions: clCreateImage2D, clEnqueueWriteImage

Write another kernel which is working with images instead of buffers and 
instantiate it in C-code

In the kernel the images have image2d_t type
To read from image use read_imagef
Sample may be set to: CLK_NORMALIZED_COORDS_FALSE | 
CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST

Check if the results are still correct



S. Chilingaryan et. all7 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Optimize matrix transposition

Unoptimized version is in 1_transpose
Original performance is about 30 GB/s

Use local memory to coalescence accesses to global memory
Kernel memory is allocated using clSetKernelArg with NULL passed as last 
argument. In the kernel the pointer to shared memory is declared with 
__local keyword.
The provided skeleton passes 2 * get_local_size(0) * get_local_size(0) * 
sizeof(float) bytes of local memory to kernel 

Try to prevent local memory bank conflicts
Expected performance is about 50 GB/s

Verify that stored results (result-transpose.out) have not changed



S. Chilingaryan et. all8 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Optimize vector dot product

Unoptimized version is in 2_dotproduct
Just uses a single work-item for computations
get_local_size(0) * sizeof(float) bytes of local memory is provided
size * sizeof(float) bytes of global memory is provided
Original performance is about 0.12 GB/s

Use multiple work-items while there is enough independent data
Remember to coalescence accesses to global memory

Sum up work-group results in shared memory
barrier(CLK_LOCAL_MEM_FENCE) is used to synchronize work-items in 
the group (all local memory writes completed before executing anything 
beyond this point in the code)
Remember about local memory bank conflicts

Get final results in the global memory
barrier(CLK_GLOBAL_MEM_FENCE) is used to synchronize work-items 
in the group (all global memory writes completed before executing anything 
beyond this point in the code)

Expected performance is about 100 GB/s
Verify printed result



S. Chilingaryan et. all9 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

NVIDIA Video SIMD instructions

Unoptimized version is in 3_simd
The goal is to compute a vector each element of which is absolute 
difference of two input vectors (uint8_t data type).
The provided version processes all bytes individually.
The performance is about 40 GB/s

Modify the source to execute a single work-item per 4 elements. 
Modify kernel to work with 32 bit integers
Verify that results are still correct
Modify kernel to use NVIDIA SIMD instruction (vabsdiff4)
Inline assembler is used for this purpose (gcc syntax)
You specify NVIDIA instruction along with considered data types and 
provided the list of input and output variables

Verify that stored results (result-diff.out) have not changed
Expected performance is 80 GB/s

asm("vabsdiff4.u32.u32.u32 %0, %1, %2, %0;" : "=r"(out) : "r"(in1), "r"(in2));

The instruction was introduced in Kepler architecture and code 
will only work on ipepdvcompute2.ka.fzk.de



S. Chilingaryan et. all10 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Compute pi with monte-carlo

Skeleton is in 4_pi
There is kernel stub which provides random numbers using random123 
library
At each iteration you will provide two pairs of random numbers in a and b
get_local_size(0) * sizeof(long) bytes of local memory is provided
get_num_groups(0) * sizeof(long) bytes of global memory is provided

Compute monte-carlo hits in local variable (i.e. then points a and b are in inside 
circle with radius 1). Then, use the same reduction scheme as in vector dot-
product. Return total number of hits by all work items in the result. If correct 
number of hits returned, the approximation of pi will be printed.

Expected performance is about 6 giga-tries/s



S. Chilingaryan et. all11 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Matrix multiplication
Stub is in 5_matrix

Intel MKL (CPU) version gives about 70 Gflop/s on ipepdvcompute1
clAMDBlas (GPU) produces about 280 Gflop/s

Optimize
Consider square matrices with side multiple of whatever you like
Basic implementation
Use local memory
Process multiple points per work-item
Use pinned memory
Use queues to add parallelism (multiple matrices)
Try using textures to enhance cache hits
Support arbitrary matrix sizes
Support big matrices
Compute big matrices using multiple GPUs

Run application with environmental variable CUDA_VISIBLE_DEVICES 
set to “1,2,3,4,5,6,7,8” to have more GPUs

The simple version will produce about 70 Gflop/s, the optimized (single GPU) 
may go as far as 700 Gflop/s excluding transfers. Interleaving transfers and 
computations may give about 500 Gflop/s (multiple matrix case).


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

