
www.kit.eduKIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Optimization Strategies
● Complex memory hierarchies with drastically varied speeds

─ Only 6 – 12 GB/s to the system memory

─ ~ 500 clock cycle latency to access global memory

─ And it will be worse if optimal access patterns are not
followeed

─ Very low Bandwidth-per-flop ratio (50 GB/s per Tflop)

● Varying architectures

─ Amount of registers, sizes of caches vary drastically and hence
optimal grid configuration and accepted kernel complexity

─ Balance of operation performances changes between devices
as well

● GPUs optimized for FP additions and multiplications

─ Branching and many other operations are very expensive

S. Chilingaryan et. all2 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

What are this NVIDIA GFlops

GTX Titan is able to execute 2688 FMA (A*B + C) instructions
(counted as 2 instructions) per clock cycle if not stuck on memory
access: 2688 * 2 * 837 MHz = 4,499,712 MFlops

Instructions per CU
per clock

Fermi Kepler

FP FMA, ADD, MULTIPLY 32 192

FP Reciprocal 4 32

Integer ADD 1 ~ 1

Integer MULTIPLY 16 32

Integer Compare 16 8

Type Conversions 16 8

Type conversions on GTX Titan will be slower than on Fermi!

S. Chilingaryan et. all3 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Special instructions
Allow IEEE 754 incompatibility and get faster fp performance but lower precision

There is advanced NVIDIA instructions which will be not used by OpenCL
optimizing compiler.

•Math functions with reduced precision: __sinf, __cosf, __expf, …
•SIMD Video Instructions vabsdiff, vadd, vsub, vmin, vmax, vset, vabsdiff2
(so on…), vabsdiff4 (so on...) operating on 1-2-4 byte integer arguments.
•Kepler shfl instruction intended to exchange data between warp work-items.

__kernel void multiply(__global unsigned int *res, *a, *b) { // times less work-items
 unsigned res0, a0 = *(__global unsigned*)&a[i], b0 = *(__global unsigned*)&b[i];
 asm("vabsdiff4.u32.u32.u32 %0, %1, %2, %0;" : "=r"(res0) : "r"(a0), "r"(b0));
 (__global unsigned)&res[i * size + j] = res0;
}

err = clBuildProgram(app, num_devices, devices, “-cl-fast-relaxed-math”, NULL, NULL);

__kernel void multiply(__global unsigned char *res, *a, *b) {
 res[get_global_id(0)] = abs(a[get_global_id(0)] - b[get_global_id(0)]);
}

Compute absolute difference of 2 byte vectors

S. Chilingaryan et. all4 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Conditionals

Warp (32 work-items on all NVIDIA devices) is minimal unit of
executions. GPU will execute both branches if conditional evaluates
differently within warp. On other hand, there is no performance
penalty if different wraps select different branches of if-clause

S. Chilingaryan et. all5 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Local memory

Local memory is about 10 times faster than global

Multiplication
of Matrices

C = A * B

To compute a block of C we will
need 2*M*M*N reads from
memory, but using local
memory we can limit global
memory reads to 2*M*N

__kernel void multiply(a, b, c, N, __local float *la, __local float *lb) {
 float sum = 0;
 int k, l, M = get_local_size(0);
 int tx = get_local_id(0), ty = get_local_id(1);
 int x = get_global_id(0), y = get_global_id(0);

 for(k = 0; k < N; k += M) {
la[ty][tx] = a[y * N + (k + tx)];
lb[ty][tx] = b[(k + ty) * N + x];
barrier(CLK_LOCAL_MEM_FENCE);

for (l = 0; l < M; ++l) sum += la[ty][l] * lb[l][tx]
barrier(CLK_LOCAL_MEM_FENCE);

 }
 c[y * N + x] = sum;
}

__kernel void multiply(a, b, c, N) {
 float sum = 0;
 int x= get_global_id(0); int y = get_global_id(1);
 for(int k = 0; k < N; k++)

sum += a[y * N + k] * b[k * N + x];
 c[y * N + x] = sum;
}

Synchronizing work group

S. Chilingaryan et. all6 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Complex kernels

Some times it is efficient that a single work-item process several
points of output space.

To compute 4 times bigger
block, we need only 2 times
more global memory reads

Multiplication
of Matrices

C = A * B

Complex kernels may require big number of
registers. This reduces device occupancy and, if
the hard limit of registers per work item (63
registers on Fermi) is surpassed, some local
variables will be allocated in global memory!

On AMD platform local arrays (int a[6]) will be
always allocated in the global memory.

We can overcome work-group
size limit, by computing multiple
items per work-item!

S. Chilingaryan et. all7 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

vs.

Coalescing memory accesses

Thr1 Thr2 Thr16...

128B Block 128B Block

Thr17 Thr18 Thr32...

128B Block 128B Block

FAST

SLOW

Thr1 Thr2 Thr16...

128B Block 128B Block

Thr17 Thr18 Thr32...

128B Block 128B Block

warp work items

Why we go first way?

Coalescing accesses to global memory will significantly increase
data throughput.

S. Chilingaryan et. all8 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Padding 2D arrays to avoid unaligned accesses

Pad GPU buffers to avoid
unaligned access and skip
edge checking conditionals

Non aligned accesses may also harm
performance, though on Fermi and
Kepler the effect is mostly neglected
by L2 cache

Thr1 Thr2 Thr16...

128B Block

Thr17 ...

128B Block

const size_t origin[3] = {0,0,0}
const size_t region[3] = {7, 7, 0};
const size_t pitch_gpu = 8 * sizeof(float);
Const size_t pitch_host = 0; // auto
err = clEnqueueWriteBufferRect(queue, dev_in,

CL_TRUE,
origin, origin,
region, pitch_gpu, 0, pitch_host, 0,
in,
0, NULL, NULL);

S. Chilingaryan et. all9 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Using local memory to optimize global memory
performance

__kernel void transpose(__global float *c, __global float *a, int size) {
 int x = get_global_id(0), y = get_global_id(1);
c[y + x*size] = a[x + y*size];

}

__kernel void transpose(__global float *c, __global float *a, int size, __local float *tile) {
 int x = get_global_id(0), y = get_global_id(1);
int tx = get_local_size(0), ty = get_local_size(1);

tile[tx + ty * get_local_size(0)] = a[x + y*width];
barrier(CLK_LOCAL_MEM_FENCE);

x = tx + get_group_id(1) * get_local_size(1); y = ty + get_group_id(0) * get_local_size(0);
c[x + y*height] = tile[ty + tx * get_local_size(1)];

}

Not coalesced

Synchronizing work group

Fine

clSetKernelArg(kernel, 3, 256 * sizeof(float), NULL);

Providing local memory to kernel

S. Chilingaryan et. all10 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Local memory banks

Local memory is divided into equally sized memory modules (banks)
that can be accessed in parallel. Successive 32-bit words are
assigned to successive banks and each bank has a bandwidth of 32
bits per two clock cycles

__kernel void transpose() {
...
c[x + y*height] = tile[ty + tx * get_local_size(1)];

}

Good Bad

Bad

__kernel void transpose(__global float *c, __global float *a, int size, __local float *tile)
{

 int x = get_global_id(0), y = get_global_id(1);
int tx = get_local_size(0), ty = get_local_size(1);

tile[tx + ty * (get_local_size(0) + 1)] = a[x + y*width];
barrier(CLK_LOCAL_MEM_FENCE);

x = tx + get_group_id(1) * get_local_size(1);
y = ty + get_group_id(0) * get_local_size(0);
c[x + y*height] = tile[ty + tx * (get_local_size(1) + 1)];

}
Good

S. Chilingaryan et. all11 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Reduction

How we sum elements of a vector with GPU?

1. While array is big enough just
sum independent parts it with
work-items
2. Reduct each work-group to a
single value in local memory
3. Reduct to a sum in global
memory

__kernel void multiply(__global float *res, __global float *a, int size,
__local float *lmem, __local float *gmem) {

 int i;
 float sum = 0, full_sum = 0;
 int item_size = size / get_global_size(0);
 int tid = get_local_id(0);
 Int groups = get_num_groups(0);

 for(i = 0; i < item_size; i++)
sum += a[i * get_global_size(0) + get_global_id(0)]

 lmem[tid] = sum;

 barrier(CLK_LOCAL_MEM_FENCE);
 for(i = get_local_size(0)/2; i>0; i >>= 1) {

if (tid < i) lmem[tid] += lmem[tid + i];
barrier(CLK_LOCAL_MEM_FENCE);

 }

 if (tid == 0) gmem[group] = lmem[0];
 barrier(CLK_GLOBAL_MEM_FENCE);

 if (get_global_id(0) == 0) {
for (i = 0; i < groups; i++) full_sum += gmem[i];
*res = full_sum;

 }
}

Coalesced access

Less bank conflicts

Atomics may be used
for integer types

S. Chilingaryan et. all12 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Scheduler of Fermi Compute Unit

There is even more parallelism when 32 cores per CU on Fermi

While one wrap is waiting for LD from global memory to complete other wraps may
execute computations. This is used to hide memory access latencies.

S. Chilingaryan et. all13 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Texture Engine
Features:

• Spatial-aware cache
• Bi/tri-linear interpolation
• Normalized coordinates
• Different clamping modes

Texture engine is accessed using
LD/ST units, but it performs some
computations as well (interpolation).
On compute bound tasks this may be
used to get extra performance.

Uses:
• Linear interpolation, i.e.

image scaling
• Optimize random access

to multidimensional arrays

GT280 GTX580 Titan

930 GF 1580 GF 4500 GF

48 GT/s 49 GT/s 188 GT/s

19.3 31.6 23.9

Core Throughput

Texture Fill Rate

Ratio

S. Chilingaryan et. all14 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Hiding the memory latencies

• More active wraps per compute unit
• More independent instructions in the queue

– Some architectures (AMD VLIW) actually rely on flow of independent
instructions to fully utilize hardware compute resources

How to hide latencies?

What limits number of active wraps?

• The work-group size
– Fermi supports up to 48 active wraps per CU, but limited to 8 active work-

groups. So, if there is less than 192 work-items in the group (i.e. 6 full
wraps), the full occupancy will be impossible to achieve

• Used local memory
– Fermi has up to 48 KB of shared memory per CU. High shared-memory

usage (above 6 KB per group) will limit maximum number of active work-
groups. However, this may be compensated by increased work-group size.

• Used registers
– Fermi CU has 32k 4-byte registers per CU. High register usage (more than

20 registers) will limit maximum number of active wraps.

S. Chilingaryan et. all15 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

CUDA Occupancy Calculator

As well useful for OpenCL code run on NVIDIA hardware

Important to select
optimum work-group size

S. Chilingaryan et. all16 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Constant & Texture Memories
Optimized for work-items reading
from the same memory location

__kernel void multiply(float *out,
const float *in, __constant float *params) {
out[id] = in[id] * param[0];

}

Constant Memory

Texture Memory
Optimized for 2D spatial locality

const sampler_t sampler = CLK_FILTER_LINEAR
| CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP_TO_EDGE;

__kernel void scale(float *out, __read_only image2d_t in) {
int id = (get_global_id(1) * get_global_size(0)

+ get_global_size(0);

float2 src = (float2)(
1 . * get_global_id(0) / get_global_size(0),
1 . * get_global_id(1) / get_global_size(1)

)

float4 val = reade_imagef(in, sampler, src);
out[id] = val.x;

}

cl_image_format format;
format.image_channel_order = CL_R;
format.image_channel_data_type = CL_FLOAT;
cl_mem img = clCreateImage2D(ctx, CL_MEM_READ_ONLY,

&format, size, size, 0, NULL, &err);

size_t origin = {0, 0, 0}, region = {size, size, 1}, pitch = 0;
err = clEnqueueWriteImage(queue, img, CL_TRUE,

origin, region, pitch, 0, data, 0, NULL, &event);

S. Chilingaryan et. all17 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Page-locked vs. Page-able memory

Pageable

Pinned

0 1 2 3 4 5 6 7 8

Host to Device Device to Host GB/s

GTX590 (gen2)

Pageable

Pinned

0 2 4 6 8 10 12

Host to Device Device to Host GB/s

AMD HD7970 (gen3)

Two times faster transfer rates between host and device
Some devices support overlapping of data transfers from/to page-locked memory

and kernel execution. For compute-bound problems you will not see the data
transfers at all.

There is no concept of page-locked memory in OpenCL. However, NVIDIA
suggests to allocate using clCreateBuffer as below

This also works on AMD, but on AMD platform such allocations reserve the
memory on GPU devices and maximum possible allocation will be limited by the
memory available on GPU.

cl_mem mem = clCreateBuffer(ctx, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, size, NULL, &err);
float *ptr = (cl_float*)clEnqueueMapBuffer(queue, mem, CL_TRUE, CL_MAP_WRITE, 0, size, 0, NULL, NULL, &err);

S. Chilingaryan et. all20 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Tuning tomography for hardware architectures

GT200
Base version
Uses texture
engine

Fermi
High computation power, but
low speed of texture unit
Reduce load on texture engine:
use shared memory to cache
the fetched data and, then,
perform linear interpolation
using computation units.

Kepler
Low bandwidth of integer inst-
ructions, but high register count
Uses texture engine, but
processes 16 projections at once
and 16 points per thread to
enhance cache hit rate

GCN
High performance of texture
engine and computation nodes
Balance usage of texture engine
and computation nodes to get
highest performance

VLIW
Executes 5 independent
operations per thread
Computes 16 points per thread
in order to provide sufficient
flow of independent instructions
to VLIW engine

+100%

+530% +95%

+75%

S. Chilingaryan et. all21 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Summary

• Decide which precision is required. Do you really need double precision?
Do you need IEEE 754 compliance?

• First get a simple version working, than profile and start optimizing
• Use page-locked memory and multiple command queues to allow parallel

execution of multiple kernels and data transfer overlapping
• Estimate optimal work-group size and result-space per work-item
• Use local memory to optimize usage of global memory and think how

usage of work items may be re-arranged during different stages of the
kernel execution

• Remember about global memory coalescing and local memory banks
• Use texture engine to optimize caching of randomly accessed arrays
• Try to provide flow of independent instructions
• Even if you plan to use OpenCL and AMD GPUs, read CUDA

documentation CUDA Programming Guide / Best Practices.
Understand the samples provided with NVIDIA and AMD SDKs.

	Parallel Architectures
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 21

