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Optimization Strategies
● Complex memory hierarchies with drastically varied speeds

─ Only 6 – 12 GB/s to the system memory

─ ~ 500 clock cycle latency to access global memory

─ And it will be worse if optimal access patterns are not 
followeed

─ Very low Bandwidth-per-flop ratio (50 GB/s per Tflop)

● Varying architectures

─ Amount of registers, sizes of caches vary drastically and hence 
optimal grid configuration and accepted kernel complexity

─ Balance of operation performances changes between devices 
as well

● GPUs optimized for FP additions and multiplications

─ Branching and many other operations are very expensive
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What are this NVIDIA GFlops

GTX Titan is able to execute 2688 FMA (A*B + C) instructions 
(counted as 2 instructions) per clock cycle if not stuck on memory 
access: 2688 * 2 * 837 MHz = 4,499,712 MFlops

Instructions per CU 
per clock

Fermi Kepler

FP FMA, ADD, MULTIPLY 32 192

FP Reciprocal 4 32

Integer ADD 1 ~ 1

Integer MULTIPLY 16 32

Integer Compare 16 8

Type Conversions 16 8

Type conversions on GTX Titan will be slower than on Fermi!
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Special instructions
Allow IEEE 754 incompatibility and get faster fp performance but lower precision

There is advanced NVIDIA instructions which will be not used by OpenCL 
optimizing compiler. 

•Math functions with reduced precision: __sinf, __cosf, __expf, …
•SIMD Video Instructions vabsdiff, vadd, vsub, vmin, vmax, vset, vabsdiff2 
(so on…), vabsdiff4 (so on...) operating on 1-2-4 byte integer arguments. 
•Kepler shfl instruction intended to exchange data between warp work-items.

__kernel void multiply(__global unsigned int *res, *a, *b) {  // times less work-items
    unsigned res0, a0 = *(__global unsigned*)&a[i], b0 = *(__global unsigned*)&b[i];
    asm("vabsdiff4.u32.u32.u32 %0, %1, %2, %0;" : "=r"(res0) : "r"(a0), "r"(b0));
    *(__global unsigned*)&res[i * size + j] = res0;
}

err = clBuildProgram(app, num_devices, devices,  “-cl-fast-relaxed-math”, NULL, NULL);

__kernel void multiply(__global unsigned char *res, *a, *b) {
    res[get_global_id(0)] = abs(a[get_global_id(0)] - b[get_global_id(0)]);
}

Compute absolute difference of 2 byte vectors
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Conditionals

Warp (32 work-items on all NVIDIA devices) is minimal unit of 
executions. GPU will execute both branches if conditional evaluates 
differently within warp. On other hand, there is no performance 
penalty if different wraps select different branches of if-clause
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Local memory

Local memory is about 10 times faster than global

Multiplication
of Matrices

C = A * B

To compute a block of C we will 
need 2*M*M*N reads from 
memory, but using local 
memory we can limit global 
memory reads to 2*M*N

__kernel void multiply(a, b, c, N, __local float *la, __local float *lb) {
    float sum = 0;
    int k, l, M = get_local_size(0);
    int tx = get_local_id(0), ty = get_local_id(1);
    int x = get_global_id(0), y = get_global_id(0);

    for(k = 0; k < N; k += M) {
la[ty][tx] = a[y * N + (k + tx)];
lb[ty][tx] = b[(k + ty) * N + x];
barrier(CLK_LOCAL_MEM_FENCE);

for (l = 0; l < M; ++l) sum  += la[ty][l] * lb[l][tx]
barrier(CLK_LOCAL_MEM_FENCE);

    }
    c[y * N + x] = sum;
}

__kernel void multiply(a, b, c, N) {
    float sum = 0;
    int x= get_global_id(0);  int y = get_global_id(1);
    for(int k = 0; k < N; k++) 

sum  += a[y * N + k] * b[k * N + x];
   c[y * N + x] = sum;
}

Synchronizing work group



S. Chilingaryan et. all6 Institute for Data Processing and 
Electronics
Karlsruhe Institute of Technology

Complex kernels

Some times it is efficient that a single work-item process several 
points of output space.

To compute 4 times bigger 
block, we need only 2 times 
more global memory reads

Multiplication
of Matrices

C = A * B

Complex kernels may require big number of 
registers. This reduces device occupancy and, if 
the hard limit of registers per work item (63 
registers on Fermi) is surpassed, some local 
variables will be allocated in global memory!

On AMD platform local arrays (int a[6]) will be 
always allocated in the global memory. 

We can overcome work-group 
size limit, by computing multiple 
items per work-item!
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vs.

Coalescing memory accesses

Thr1 Thr2 Thr16...

128B Block 128B Block

Thr17 Thr18 Thr32...

128B Block 128B Block

FAST

SLOW

Thr1 Thr2 Thr16...

128B Block 128B Block

Thr17 Thr18 Thr32...

128B Block 128B Block

warp work items

Why we go first way?

Coalescing accesses to global memory will significantly increase 
data throughput.
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Padding 2D arrays to avoid unaligned accesses

Pad  GPU buffers to avoid 
unaligned access and skip 
edge checking conditionals

Non aligned accesses may also harm 
performance, though on Fermi and 
Kepler the effect is mostly neglected 
by L2 cache

Thr1 Thr2 Thr16...

128B Block

Thr17 ...

128B Block

const size_t origin[3] = {0,0,0}
const size_t region[3] = {7, 7, 0};
const size_t pitch_gpu = 8 * sizeof(float);
Const size_t pitch_host = 0; // auto
err = clEnqueueWriteBufferRect(queue, dev_in, 

CL_TRUE, 
origin, origin, 
region, pitch_gpu, 0, pitch_host, 0,  
in, 
0, NULL, NULL);
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Using local memory to optimize global memory 
performance

__kernel void  transpose(__global float *c, __global float *a, int size) {
 int x = get_global_id(0), y = get_global_id(1);
c[y + x*size] = a[x + y*size];

}

__kernel void  transpose(__global float *c, __global float *a, int size, __local float *tile) {
 int x = get_global_id(0), y = get_global_id(1);
int tx = get_local_size(0), ty = get_local_size(1);

tile[tx + ty * get_local_size(0)] = a[x + y*width];
barrier(CLK_LOCAL_MEM_FENCE);

x = tx + get_group_id(1) * get_local_size(1); y = ty + get_group_id(0) * get_local_size(0);
c[x + y*height] = tile[ty + tx * get_local_size(1)];

}

Not coalesced

Synchronizing work group

Fine

clSetKernelArg(kernel, 3, 256 * sizeof(float), NULL);

Providing local memory to kernel
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Local memory banks

Local memory is divided into equally sized memory modules (banks) 
that can be accessed in parallel. Successive 32-bit words are 
assigned to successive banks and each bank has a bandwidth of 32 
bits per two clock cycles

__kernel void  transpose() {
...
c[x + y*height] = tile[ty + tx * get_local_size(1)];

}

Good Bad

Bad

__kernel void  transpose(__global float *c, __global float *a, int size, __local float *tile) 
{

 int x = get_global_id(0), y = get_global_id(1);
int tx = get_local_size(0), ty = get_local_size(1);

tile[tx + ty * (get_local_size(0) + 1)] = a[x + y*width];
barrier(CLK_LOCAL_MEM_FENCE);

x = tx + get_group_id(1) * get_local_size(1); 
y = ty + get_group_id(0) * get_local_size(0);
c[x + y*height] = tile[ty + tx * (get_local_size(1) + 1)];

}
Good
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Reduction

How we sum elements of a vector with GPU?

1. While array is big enough just 
sum independent parts it with 
work-items
2. Reduct each work-group to a 
single value in local memory 
3. Reduct to a sum in global 
memory 

__kernel void multiply(__global float *res, __global float *a, int size,
__local float *lmem, __local float *gmem) {

    int i;
    float sum = 0, full_sum = 0;
   int item_size = size / get_global_size(0);
  int tid = get_local_id(0);
 Int groups = get_num_groups(0);

    for(i = 0; i < item_size; i++) 
sum += a[i * get_global_size(0) + get_global_id(0)]

   lmem[tid] = sum;

    barrier(CLK_LOCAL_MEM_FENCE);
    for(i = get_local_size(0)/2; i>0; i >>= 1) {

if (tid < i) lmem[tid] += lmem[tid + i];
barrier(CLK_LOCAL_MEM_FENCE);

    }

    if (tid == 0) gmem[group] = lmem[0];
    barrier(CLK_GLOBAL_MEM_FENCE);

    if (get_global_id(0) == 0) {
for (i = 0; i < groups; i++) full_sum += gmem[i];
*res = full_sum;

    }
}

Coalesced access

Less bank conflicts

Atomics may be used 
for integer types
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Scheduler of Fermi Compute Unit

There is even more parallelism when 32 cores per CU on Fermi

While one wrap is waiting for LD from global memory to complete other wraps may 
execute computations. This is used to hide memory access latencies.
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Texture Engine 
Features:

• Spatial-aware cache
• Bi/tri-linear interpolation
• Normalized coordinates
• Different clamping modes

Texture engine is accessed using 
LD/ST units, but it performs some 
computations as well (interpolation). 
On compute bound tasks this may be 
used to get extra performance.

Uses:
• Linear interpolation, i.e. 

image scaling 
• Optimize random access 

to multidimensional arrays

GT280 GTX580 Titan

930 GF 1580 GF 4500 GF

48 GT/s 49 GT/s 188 GT/s

19.3 31.6 23.9

Core Throughput

Texture Fill Rate

Ratio
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Hiding the memory latencies

• More active wraps per compute unit
• More independent instructions in the queue

– Some architectures (AMD VLIW) actually rely on flow of independent 
instructions to fully utilize hardware compute resources

How to hide latencies?

What limits number of active wraps?

• The work-group size 
– Fermi supports up to 48 active wraps per CU, but limited to 8 active work-

groups. So, if there is less than 192 work-items in the group (i.e. 6 full 
wraps), the full occupancy will be impossible to achieve

• Used local memory
– Fermi has up to 48 KB of shared memory per CU. High shared-memory 

usage (above 6 KB per group) will limit maximum number of active work-
groups. However, this may be compensated by increased work-group size.

• Used registers
– Fermi CU has 32k 4-byte registers per CU. High register usage (more than 

20 registers) will limit maximum number of active wraps.
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CUDA Occupancy Calculator

As well useful for OpenCL code run on NVIDIA hardware

Important to select 
optimum work-group size
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Constant & Texture Memories
Optimized for work-items reading 
from the same memory location

__kernel void  multiply(float *out,
const float *in,  __constant float *params) {
out[id] = in[id] * param[0];

}

Constant Memory

Texture Memory
Optimized for 2D spatial locality

const sampler_t sampler = CLK_FILTER_LINEAR 
| CLK_NORMALIZED_COORDS_TRUE 
| CLK_ADDRESS_CLAMP_TO_EDGE;

__kernel void  scale(float *out,  __read_only image2d_t in) {
int id = (get_global_id(1) * get_global_size(0)

+ get_global_size(0);

float2 src = (float2)( 
1 . * get_global_id(0) / get_global_size(0),
1 . * get_global_id(1) / get_global_size(1)

)

float4 val = reade_imagef(in, sampler, src);
out[id] = val.x;

}

cl_image_format format;
format.image_channel_order = CL_R;
format.image_channel_data_type = CL_FLOAT;
cl_mem img = clCreateImage2D(ctx, CL_MEM_READ_ONLY, 

&format, size, size, 0, NULL, &err);

size_t origin = {0, 0, 0}, region = {size, size, 1}, pitch = 0;
err = clEnqueueWriteImage(queue, img, CL_TRUE, 

origin, region, pitch, 0, data, 0, NULL, &event);
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Page-locked vs. Page-able memory

Pageable

Pinned

0 1 2 3 4 5 6 7 8

Host to Device Device to Host GB/s

GTX590 (gen2)

Pageable

Pinned

0 2 4 6 8 10 12

Host to Device Device to Host GB/s

AMD HD7970 (gen3)

Two times faster transfer rates between host and device
Some devices support overlapping of data transfers from/to page-locked memory 

and kernel execution. For compute-bound problems you will not see the data 
transfers at all.

There is no concept of page-locked memory in OpenCL. However, NVIDIA 
suggests to allocate using clCreateBuffer as below

This also works on AMD, but on AMD platform such allocations reserve the 
memory on GPU devices and maximum possible allocation will be limited by the 
memory available on GPU.

cl_mem mem = clCreateBuffer(ctx, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, size, NULL, &err);
float *ptr = (cl_float*)clEnqueueMapBuffer(queue, mem, CL_TRUE, CL_MAP_WRITE, 0, size, 0, NULL, NULL, &err);
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Tuning tomography for hardware architectures

GT200
Base version 
Uses texture 
engine

Fermi
High computation power, but 
low speed of texture unit 
Reduce load on texture engine: 
use shared memory to cache 
the fetched data and, then, 
perform linear interpolation
using computation units.

Kepler
Low bandwidth of integer inst-
ructions, but high register count
Uses texture engine, but 
processes 16 projections at once 
and 16 points per thread to 
enhance cache hit rate 

GCN
High performance of texture 
engine and computation nodes
Balance usage of texture engine 
and computation nodes to get 
highest performance

VLIW
Executes 5 independent 
operations per thread
Computes 16 points per thread 
in order to provide sufficient 
flow of independent instructions 
to VLIW engine

+100%

+530% +95%

+75%
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Summary

• Decide which precision is required. Do you really need double precision? 
Do you need IEEE 754 compliance?

• First get a simple version working, than profile and start optimizing
• Use page-locked memory and multiple command queues to allow parallel 

execution of multiple kernels and data transfer overlapping
• Estimate optimal work-group size and result-space per work-item 
• Use local memory to optimize usage of global memory and think how 

usage of work items may be re-arranged during different stages of the 
kernel execution

• Remember about global memory coalescing and local memory banks
• Use texture engine to optimize caching of randomly accessed arrays
• Try to provide flow of independent instructions
• Even if you plan to use OpenCL and AMD GPUs,  read CUDA 

documentation CUDA Programming Guide / Best Practices. 
Understand the samples provided with NVIDIA and AMD SDKs.


	Parallel Architectures
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 21

