
www.kit.eduKIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

GPU Programming Model

Basics of OpenCL and CUDA programming models

S. Chilingaryan and A. Kopmann, IPE
2

Execution Flow

• All GPUs are treated individually and controlled by CPU thread
– GPU cores in case of double-core cards

• Initialize contexts
• Send data to internal GPU memory
• Execute one or more task (so called kernels) on GPUs
• Collect results back in system memory

S. Chilingaryan and A. Kopmann, IPE
3

OpenCL/CUDA Kernel

The idea is to replace loops with functions (kernels) executing at
each point in problem domain

get_global_id(0)
10

Input

Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

void mul(...) {

 int i;

 for (i = 0; i < n; i++)

 out[i] = 2 * in[i];

}

__kernel mul(...) {

 int i = get_global_id(0);

 out[i] = 2 * in[i];

}

S. Chilingaryan and A. Kopmann, IPE
4

Writing a Kernel

f(A,x,y)=255-A
x,y

a) Define a Grid of work-items (threads)
- We select dimensionality (1D, 2D, or 3D)
and number of threads along each dimension
- Number of threads is not restricted by
available hardware. The OpenCL engine will
execute as many threads in parallel as
permited by hardware and will sequentialize
others.

b) Define a kernel function
- Which locates data offsets using provided
thread coordinates and perform computations

c) Schedule kernel on some data

__global__ void invert(int width, float *res,
const float *img) {

int i = threadIdx.x + threadIdx.y * width;
res[i] = 255 - img[i];

}

CUDA Kernel

__kernel void invert(int width, __global float *res,
__global const float *img) {

int i = get_global_id(0) + get_global_id(1) * width;
res[i] = 255 - img[i];

}

OpenCL Kernel

S. Chilingaryan and A. Kopmann, IPE
5

Hardware View

• Several independent Compute Units
– Able to handle independent flow

instructions
– Share Global Memory and L2 Cache

• SIMD Engine
– Issue a single instruction on multiple data

items
– Share L1 Cache

CU1 CU2

CU3

L2 Cache

CU4

SIMD Engine

L1 Cache

S. Chilingaryan and A. Kopmann, IPE
6

NVIDIA Fermi

• 16 Computing Units (SM)
• 32 FP operations per unit
• 64 KB of L1 cache per unit

S. Chilingaryan and A. Kopmann, IPE
7

Task Grid

• Task grid is split in work-groups (blocks in CUDA terminology)
• Work-group is executed on one of the Compute Units and may use the

local memory (shared memory) of this unit to exchange data
• Work-group size is not limited by the width of SIMD engine (but limited by

available register space). Each instruction is executed in several steps.
This is used to hide memory latencies.

• CU always execute a block of work-items in parallel. This block is called
warp (NVIDIA) or wavefront (AMD) and may be less when actual size of
SIMD engine.

• The Compute Unit may schedule multiple work groups simultaneously

The idea is to allow efficient
communication of work-items
using L1 cache

S. Chilingaryan and A. Kopmann, IPE
8

Memory model

• Host Memory
6 GB/s (PCIe x16
gen2) to 12 GB/s
(PCIe x16 gen3)

• Global Memory
100 – 300 GB/s with
latencies up to 1000
clocks

• Local Memory
1 – 2 TB/s (total) with
latencies below 100
clocks

• Registers
– private to work-items

Complex memory hierarchy consisting of 4 levels and with each
level one order of magnitude faster when previous!

S. Chilingaryan and A. Kopmann, IPE
9

Execution Model

OpenCL Queue (CUDA Stream) and Events are synchronization primitives
used to:
– Write asynchronous host code by scheduling multiple commands to the

queue and waiting for completion
– Better utilize GPU resources while scheduling small Grids (supported

only by some architectures)
– Handling of multiple GPU devices
– Get profiling informatation

Task1 and Task2 are independent, Task3 partitionable

S. Chilingaryan and A. Kopmann, IPE
10

Queues and Events
• Events

– Each device command will trigger an event when finished
– Device commands may have dependencies and will be

only submited to device when all specified events are
triggered. This is used to synchronize queues.

• Queues
– Automatically distributed between available GPUs
– Support In-order (default) and out-of-order execution
– May synchronize using Events

• Host code may
– Wait until complete queue finishes (clFinish)
– Wait until some events are triggered (clWaitForEvents)
– Register a callback on event (clSetEventCallback)
– Create and trigger custom events to handle

synchronization between host and queues
(clCreateUserEvent, clSetUserEventStatus)

– Get timestamps when device command entered each of 4
possible states (clGetProfilingInfo)

queued

submited

running

complete

S. Chilingaryan and A. Kopmann, IPE
11

Building OpenCL Application

• Detect available platforms and devices
• Initialize OpenCL context for selected devices
• Compile OpenCL kernels for selected devices
• Create command queues
• Copy data to device memory
• Perform computations using one or several kernels
• Copy results back to system memory
• Clean-up

S. Chilingaryan and A. Kopmann, IPE
12

Creating Context
cl_int err;
cl_platform_id platform = 0;
cl_uint num_devices;
cl_device_id devices[16] = {0};
cl_command_queue queues[16] = {0};
cl_context ctx = 0;

err = clGetPlatformIDs(1, &platform, NULL);
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 16, devices, &num_devices);
ctx = clCreateContext(props, num_devices, &device, NULL, NULL, &err);

for (i = 0; i < num_devices; i++) {
queues[i] = clCreateCommandQueue(ctx, devices[i], CL_QUEUE_PROFILING_ENABLE, &err);

}

Types of devices:
CL_DEVICE_TYPE_CPU
CL_DEVICE_TYPE_GPU
CL_DEVICE_TYPE_ACCELERATOR

clGetDeviceInfo may be used to get device configuration

Initializing all GPU devices from the
first OpenCL platform and creating 1
command queue per device

S. Chilingaryan and A. Kopmann, IPE
13

Compiling the Kernels
size_t len;
FILE * f = fopen(“application.cl”, "r");
fseek(f, 0, SEEK_END); len = ftell(f); fseek(f, 0, SEEK_SET);
char *source = (char*)malloc(len + 1);
fread(source + strlen(source), 1, len, f);
fclose(f);

const char *build_flags = “-cl-mad-enable”;
cl_program app = clCreateProgramWithSource(ctx, 1, (const char**)&source, &len, &err);
err = clBuildProgram(app, num_devices, devices, build_flags, NULL, NULL);

cl_kernel kernel = clCreateKernel(app, "invert", &err);

OpenCL specification defines a number of build flags controlling allowed
optimizations. The OpenCL platform may support additional flags defining
the compiler behavior.

In case of threaded host code, a dedicated instance of cl_kernel may be
needed for each queue in the context

Loading kernel code

Building code

Instantiating kernels

S. Chilingaryan and A. Kopmann, IPE
14

Reporting Build Errors
size_t size
char build_log[4096];
cl_build_status build_status;

err = clBuildProgram(app, num_devices, devices, build_flags, NULL, NULL);

do {
err = clGetProgramBuildInfo(app, device, CL_PROGRAM_BUILD_STATUS,

sizeof(build_status), &build_status, NULL);
} while (build_status == CL_BUILD_IN_PROGRESS);

if (build_status != CL_BUILD_SUCCESS) {
err = clGetProgramBuildInfo(app, device, CL_PROGRAM_BUILD_LOG,

sizeof(build_log) - 1, &build_log, &size);
puts(build_log);

}

Building code

Waiting until build
is complete

Different compilation results may be produced for each device

Printing build log
in case of error

S. Chilingaryan and A. Kopmann, IPE
15

Managing Device Memory
float in[size * size];
float out[size * size];

cl_mem dev_in = clCreateBuffer(ctx, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
size * size * sizeof(float), in, &err);

cl_mem dev_out = clCreateBuffer(ctx, CL_MEM_READ_WRITE,
size * size * sizeof(float), NULL, &err);

err = clEnqueueWriteBuffer(queue, dev_out, CL_FALSE, 0,

size * size * sizeof(float), out, 0, NULL, NULL);

You don't need to specify at which devices to allocate memory, OpenCL will
handle this automatically

Load source data on the host

Allocate device memory
 and load source buffer

Execute computations...
Copy results
back to host

Allocate device memory
 and load source buffer

clEnqueueReadBuffer may be used to send data to device after device
memory was allocated

clEnqueueReadBufferRect and clEnqueueWriteBufferRect may be used
to transfer parts of multidimensional array

Synchronous or asynchronous

S. Chilingaryan and A. Kopmann, IPE
16

Executing Kernels
const size_t global_size[] = {size, size};
const site_t *local_size = NULL;

clSetKernelArg(kernel, 0, sizeof(int), &size);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &dev_in);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &dev_out);

err = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, local_size, 0, NULL, &event);

clWaitForEvents(event);

cl_ulong start, end;
clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL); +=
printf(“Kernel was executed in %lu ns\n”, end - start);

Define grid size, the work-group size
determined automatically

Set kernel arguments

Schedule the kernelGrid Dimension

events to waitWait for completion

Get kernel runtime in nanoseconds

__kernel void invert(int width, __global float *res, __global const float *img) {
int i = get_global_id(0) + get_global_id(1) * width;
res[i] = 255 - img[i];

}

S. Chilingaryan and A. Kopmann, IPE
17

CUDA Equivalent

float in[size * size];
float out[size * size];

float *dev_in, *dev_out;
cudaMalloc(&dev_in, size * size * sizeof(float));
cudaMalloc(&dev_out, size * size * sizeof(float));
cudaMemcpy(dev_in, in, size * size * sizeof(float), cudaMemcpyHostToDevice);

Dim3 blocks(16,16);
Dim3 grid(M/16, N/16);
invert<<<grid,blocks>>>(size, dev_out, dev_in);

cudaMemcpy(out, dev_out, size * size * sizeof(float), cudaMemcpyDeviceToHost);

__global__ void invert(int width, float *res, const float *img) {
int i = threadIdx.x + threadIdx.y * width;
res[i] = 255 - img[i];

}

Load source data on the host

Allocate device memory
 and copy source buffer

Define the grid and run
the kernel.

Get results
back

S. Chilingaryan and A. Kopmann, IPE
18

Using PyOpenCL
import pyopencl as cl
import numpy

in = numpy.random.rand(size * size).astype(numpy.float32)
out = numpy.empty_like(a)

ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx, properties=cl.command_queue_properties.PROFILING_ENABLE)

src = open("application.cl", "r").read()
program = cl.Program(ctx, kernelSrc).build()

dev_in = cl.Buffer(ctx, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=in)
dev_out = cl.Buffer(ctx, cl.mem_flags.WRITE_ONLY, out.nbytes)

LocalWorkSize = (16, 16,)
globalWorkSize = (size, size,)
event = program.invert(queue, global_size, local_size, size, dev_out, dev_in)

event.wait()
cl.enqueue_read_buffer(queue, out, dev_out).wait()

print("GPU execution time: %g ns" % (event.profile.end - event.profile.start))

Load source data on the host

Building kernels

Create context and queue

Allocating
device memory

Define the grid and run the kernel.

Wait completion and
get results back

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

