

High-performance computing hardware for high data rates

<u>Agenda</u>

Overview Performance Programming Models Tools and Libraries OpenCL Programming Model GPU Hardware Optimization Strategies Tutorial

Why care about parallel programming?

Xeon E5 Series Up to 12 cores 256 bit SIMD instructions

NVIDIA Titan 14 SMX cores 192 fp blocks each

Xeon Phi ~ 60 cores 512 bit SIMD instructions

Samsung Galaxy Note 8 ARM cores

3

General-purpose processors vs. GPUs

- More computations, less logic
- Highly parallel architectures able to process up to several thousand floating point numbers in parallel
- SIMT architecture optimized to execute single command on multiple data items
- Varying hardware architectures requiring different optimization strategies
- Only certain operations are fast while other may execute slower than on general purpose processor
- Significantly worsened computation-to-memory ratio and smaller caches
- Many-TFlop GPUs are mass-market products and available under 500 EUR
- Easy scaling using PCI express bus. Standard desktop boards may handle up to 8 GPU-cores

DRAM

Computations vs. Memory

Institute for Data Processing and Electronics Karlsruhe Institute of Technology

4

Actual Performance

Matrix Multiplication

1D Fast Fourier Transform

Memory Bandwidth

Programming Models

OpenCL Platforms

Libraries

	CUDA	OpenCL	
BLAS	cuBLAS	ViennaCL / APPML	
Sparse BLAS	cuSPARSE	ViennaCL	
Lapack	CULA / Magma	clMagma	
Sparse Solvers	cuSP	ViennaCL	
FFT	cuFFT	ocIFFT / APPML	
RNG	cuRAND	MTGP, Random123	
STL	NVIDIA Thrust	AMD Bolt	

Performance

Multiplication of real single-precision matrices (1024x1024) on GTX590

1D FFT of a real single-precision vector on GTX680

Development Tools

	Platforms	CUDA	Mode	Includes
NVIDIA ComputeProf	NVIDIA	CUDA 4.0 / OpenCL	GUI / Console	Debugger / Profiler
NVIDIA Nsight	NVIDIA	CUDA	GUI / Console	IDE / Debugger / Profiler
AMD CodeXL	AMD	OpenCL	GUI	Debugger / Profiler
gDebugger	NVIDIA, AMD	OpenCL	GUI	Debugger

NVIDIA GPUDirect

Direct communication between GPUs, Network, and other devices on PCI express bus

11

OpenCL vs. CUDA

- Advanced features of NVIDIA Cards, specially GPUDirect
- Faster introduction of new features
- Better Libraries
- Shorter support code

- Open standard supported by many vendors
- Hybrid computing using both GPUs and CPUs
- Better synchronization across multiple devices
- Easier run-time compilation support
- Full C99 compatibility
- WebCL ready for Web

