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Abstract

Back-Projection is the major algorithm in Computed Tomography to recon-
struct images from a set of recorded projections. It is used for both fast
analytical methods and high-quality iterative techniques. X-ray imaging fa-
cilities rely on Back-Projection to reconstruct internal structures in material
samples and living organisms with high spatial and temporal resolution. Fast
image reconstruction is also essential to track and control processes under
study in real-time. In this article, we present efficient implementations of
the Back-Projection algorithm for parallel hardware. We survey a range of
parallel architectures presented by the major hardware vendors during the
last 10 years. Similarities and differences between these architectures are
analyzed and we highlight how specific features can be used to enhance the
reconstruction performance. In particular, we build a performance model
to find hardware hotspots and propose several optimizations to balance the
load between texture engine, computational and special function units, as
well as different types of memory maximizing the utilization of all GPU sub-
systems in parallel. We further show that targeting architecture-specific fea-
tures allows one to boost the performance 2-7 times compared to the current
state-of-the-art algorithms used in standard reconstructions codes.
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1. Introduction

X-ray tomography is a powerful tool to investigate materials and small an-
imals at the micro- and nano-scale [1]. Information about X-ray attenuation
or/and phase changes in the sample is used to reconstruct its internal struc-
ture. Recent advances in X-ray optics and detector technology have paved
the way for a variety of new X-ray imaging experiments aiming to study
dynamic processes in materials and to analyze small organisms in vivo. At
the Swiss Light Source (SLS) scientists were able to take high quality 3D
snapshots of 150 Hz oscillations of a blowfly flight motor [2]. A temporal
resolution of 20 milliseconds was achieved during a stencil test performed at
SLS [3] and also in the analysis of morphological dynamics of fast-moving
weevils at the ANKA synchrotron at KIT [4].

To achieve these results, the instrumentation used at imaging beamlines
has recently undergone a major update. The installed streaming cameras
are able to deliver up to hundreds of thousands of frames per second with a
continuous data rate up to 8 GB/s [5]. Newly developed control systems at
ANKA [6], SLS [5], and other synchrotron facilities use the acquired imaging
information to track the processes under study and adjust the instrumenta-
tion accordingly. These control systems rely highly on the performance of
the integrated image processing frameworks. Faster acquisition and a high
level of automation is essential to study dynamic phenomena and at the
same time enables experiments with significantly increased sample through-
put. For example, in 2015 Diamond Light Source (DLS) has reported that
typically about 3000 scans are recorded during 5 days of operation at a
single imaging beamline [7]. Consequently, the amount of data generated
at imaging beamlines quickly grows and results in a steep rise of the re-
quired computing power. In order to achieve higher temporal resolution and
to prolong the duration of experiments, advanced methods are developed
that incorporate a priori knowledge in the reconstruction procedure. These
methods are able to produce high-quality images from undersampled and
underexposed measurements, as demonstrated by [8, 9]. Unfortunately these
methods are computationally significantly more demanding then traditional
reconstruction algorithms and further increase the load on the computing
infrastructure [10].

To tackle the performance challenge several reconstruction frameworks



have been developed and optimized to utilize the parallel capabilities of
nowadays computing architectures. At SLS GridRec, a fast reconstruction
approach optimized for conventional CPU technology, has been adopted [11].
The reconstruction is scheduled across a dedicated cluster and reconstructs
a 3D image within a couple of minutes [5]. Other frameworks use GPUs
to accelerate the computation and are able to achieve minute-scale recon-
structions at a single node equipped with multiple GPU adapters. PyHST
is developed at ESRF and uses the CUDA framework to offload image re-
construction to NVIDIA GPUs [12]. The second version of PyHST provides
also a number of iterative reconstruction techniques [13]. The UFO par-
allel computing framework is used at ANKA synchrotron to realize in-vivo
tomography and laminography experiments [14, 15]. It constructs a data
processing workflow by combining basic building blocks in a graph structure.
OpenCL is used to execute the reconstruction at parallel accelerators with
a primary focus on NVIDIA and AMD GPUs. ASTRA is a fast and flex-
ible development platform for tomographic algorithms with MATLAB and
python interfaces [16, 17]. It is implemented in C++ and uses CUDA to
offload computations to GPU. Several other frameworks are based on the
ASTRA libraries to provide GPU-accelerated reconstruction, for instance
the Savu framework at DLS [7] or TomoPy at the Advanced Photon Source
(APS) [18]. Recent versions of TomoPy also support UFO and GridRec as
backends. All of the GPU-accelerated frameworks are capable to distribute
the computation to a GPU cluster as well.

While most of the nowadays imaging frameworks rely heavily on parallel
hardware to speed-up the reconstruction, specific features of the GPU ar-
chitecture are rarely considered. On other hand, the hardware architectures
differ significantly [19]. Organization of memory and cache hierarchies, per-
formance balance between different types of operations, and even the type of
parallelism varies. A significant speed-up is possible if details of the specific
architecture are taken into account as illustrated in [20]. Fast execution is
especially important if the reconstruction is embedded in a control workflow.
Minimal latency is essential to track faster processes and to improve the
achieved spatial and temporal resolutions. Due to unavoidable communica-
tion overhead, it is not always possible to reduce the latencies by scaling the
reconstruction cluster.

For online monitoring and control, normally fast analytical methods are
used to reconstruct 3D images. There are two main approaches: Filtered
Back Projection (FBP) and methods based on the Fourier Slice Theorem [21].



The later methods are asymptotically faster, but due to the involved interpo-
lation in the Fourier domain are more sensitive to the quality of the available
projections. For typical geometries Fourier-based methods are several times
faster using the same computing hardware [22] and should be preferred if the
computing infrastructure is limited to general-purpose processors only [5].
Recent study suggests to implement back projection as convolution in log-
polar coordinates in order to gain high reconstruction speed with interpola-
tion in the image domain [23]. However, this new method has not yet been
adopted in production environments. Still, Filtered Back Projection is the
method of choice, largely due to it simplicity and robustness. Therefore,
the efficiency of the FBP implementation is still crucial for the operated
monitoring and control systems. Furthermore, methods used for low dose
tomography normally consist out of sequences of forward and back projec-
tions. And, thus, a faster implementation of the back projection lowers also
the computational demands for high-quality offline reconstruction and might
reduce the required hardware investments.

While there are several articles aiming at optimization of Back Projection
for general-purpose processors and Intel Xeon-Phi accelerators [24], up to our
knowledge there are no publications considering the variety of GPU archi-
tectures. A number of papers addresses specific GPU architectures [25, 26].
Multiple papers perform a general analysis of a range of GPU architectures,
reveal undisclosed details trough micro-benchmarking, and propose guide-
lines for performance optimization [27, 28, 29]. This information is invaluable
to understand factors limiting performance on a specific architecture and to
find an alternative approach to achieve a better performance. Several papers
propose methods to auto-tune computation kernels [30]. However, the tun-
ing is limited to finding optimal configuration of pre-defined parameters like
desired occupancy, dimensions of execution blocks, etc. For instance, there
are no automated solutions to tune the balance between the texture engine
and the computational cores.

In [31], we presented two highly-optimized back-projection algorithms for
NVIDIA Pascal GPUs and a hybrid approach to balance the load between
different GPU subsystems using both in parallel. While the algorithms can
be used on different hardware, multiple modifications are required to address
the differences in the architectures efficiently. Furthermore, the proposed
hybrid approach is only suitable for the NVIDIA GPUs of a few latest gen-
erations. A different scheme to balance load is required for AMD, Intel, and
older NVIDIA GPUs. In this paper, we review a variety of parallel architec-



tures presented in last 10 years and establish a methodology to expand the
original work to different parallel hardware. We discuss hardware differences
in detail, build performance model, and demonstrate how the differences can
be addressed to optimize the performance of the FBP algorithm on the exist-
ing parallel hardware. We also propose two new methods to balance the load
between different GPU subsystems. One targets NVIDIA Kepler architec-
ture and another can be applied universally but with a minor penalty to the
quality. We will focus on the optimizations of the back-projection algorithm
and will only briefly mention the organization of data flow as it is already
explained in literature [12, 15]. We also do not cover scaling issues since
the proposed optimizations can be easily integrated in existing frameworks
like ASTRA, PyHST, or UFO which provide multi-GPU and GPU-cluster
support already.

The article is organized as follows. The hardware setup, software config-
uration, and pseudo-code conventions are listed in section 2. A short intro-
duction to parallel architectures that is required to understand the proposed
optimizations is given in section 3. In this section we also highlight the dif-
ferences between considered parallel architectures. The Filtered Back Pro-
jection algorithm and the state-of-the-art implementation are presented in
section 4. A number of optimizations to the state-of-the-art implementation
of the back-projection algorithm are proposed in section 5. An alternative
implementation relaying on a different set of hardware resources is developed
in section 6. A hybrid approach combining both approaches to fully utilize
all hardware resources is presented in section 7. The achieved performance
improvements are finally discussed in section 8.

2. Setup, Methodology, and Conventions

2.1. Hardware Platform

To evaluate the performance of the proposed methods, we have selected
9 AMD and NVIDIA GPUs with varying micro-architectures. Table 1 sum-
marizes the considered GPUs. These GPUs were assembled into the 3 GPU
servers. The newer NVIDIA cards with Maxwell and Pascal architectures
were installed in a Supermicro 7047GT based server specified in Table 2.
The older NVIDIA cards and all AMD cards were installed in two identical
systems based on the Supermicro 7046GT platform. The full specification is
given in the table 3. Additionally, we have tested how the developed code



is performing on Intel Xeon Phi 5110P accelerator. The accelerator was
installed in the first platform along with the newer NVIDIA cards.

Table 1: List of selected GPU architectures

Vendor GPU Arch. Code Release
NVIDIA GeForce GTX 295 GT200 GT200 2009
NVIDIA GeForce GTX 580 Fermi GF110 2010
NVIDIA GeForce GTX 680 Kepler GK104 2012
NVIDIA GeForce GTX Titan Kepler GK110 2013
NVIDIA GeForce GTX 980 Maxwell GM204 2014
NVIDIA GeForce GTX Titan X Pascal GP102 2016

AMD Radeon HD-5970 VLIW5 Cypress 2009
AMD Radeon HD-7970 GCN1 Tahiti 2012
AMD Radeon R9-290 GCN2 Hawaii 2013

Table 2: Server for newer NVIDIA cards

Platform Supermicro 7047GT GPU Server
Motherboard Supermicro X9DRG-QF with Intel C602

chipset
Memory 256 GB DDR3-133 Memory
Processor Dual Intel Xeon E5-2640 (24 cores at 2.5

GHz)

Table 3: Servers for AMD and older NVIDIA cards

Platform Supermicro 7046GT GPU Server
Motherboard Supermicro X8DTG-QF with Intel 5520

chipset
Memory 96 GB DDR3-1066 Memory
Processor Dual Intel Xeon X5650 (12 cores at 2.67

GHz)

2.2. Software Setup
All described systems were running OpenSuSE 13.1. The code for the

NVIDIA cards was developed using the CUDA framework. As newer versions
of the framework have dropped support for older GPUs, we have used CUDA
6.5 for the NVIDIA GeForce GTX295 card and CUDA 8.0 for other NVIDIA
GPUs. The AMD version of the code is based on OpenCL and was compiled
using AMD APPSDK 3.0. Additionally, we have tested the performance of
Xeon CPUs and a Xeon Phi accelerator using Intel SDK for OpenCL. Since
the latest version of Intel OpenCL SDK does not support Xeon Phi processors
any more, again we needed to use two different SDK versions. The newer one
was used to evaluate the performance of the Xeon processors while the older
one served to execute the developed methods on the Xeon Phi accelerator.
All installed software components are summarized in Table 4.



Table 4: Software components

Operating System OpenSuSE 13.1
System Configuration kernel 3.11.10, glibc 2.18, gcc 4.8.1
CUDA Platform CUDA SDK 8.0.61, driver 375.39
CUDA Platform (GT200) CUDA SDK 6.5.14, driver 340.102
AMD Platform APP SDK 3.0.130.136, driver 15.12
Intel Platform OpenCL SDK 2017 v. 7.0.0.2511
Intel Platform (Xeon Phi) MPSS 3.5.1, OpenCL SDK 4.5.0.8

2.3. Benchmarking Strategy

In this article we are not aiming to precisely characterize the performance
of the graphics cards, but rather validate the efficiency of the proposed op-
timizations. For this reason we take a relatively lax approach to the per-
formance measurements. In most tests, we use a data set consisting of 2048
projections with dimensions of 2048 by 2048 pixels each. 512 slices with same
dimensions are reconstructed and the median reconstruction time is used to
estimate the performance.

Starting with the Kepler architecture, NVIDIA introduces the GPUBoost
technology to adapt the clock speed according to the current load and the
processor temperature [32]. To avoid significant performance discrepancies,
we run a heat-up procedure until the performance stabilizes. Furthermore,
we verify that the actual hardware clock measured before start of measure-
ments (but after the heat-up procedure) does not significantly differ from
the clock measured after the measurements. Otherwise, we re-run the test.
Finally, we exclude all I/O operations in the benchmarks. The reconstruc-
tions are executed using dummy data and the results are discarded without
transferring them back to the system memory.

2.4. Quality Evaluation

Some of the suggested optimizations alter the resulting reconstruction.
To assess the effect on quality, we compare the obtained results with the
standard reconstruction in such cases. The standard Shepp Logan Head
Phantom with resoltion of 1024x1024 pixels is used for the evaluation [33].
As the changes are typically small and are hardly visible in the 2D image,
we show a profile along a vertical line crossing most of the features in the
phantom, see Figure 1.

2.5. Pseudo-code Conventions

To avoid long code listings we use pseudo-code to describe the algorithms.
We use mixture of a mathematical and a C -style notation to keep it minimal-



istic and easy to follow. C syntax is mostly adapted for operations, loops,
and conditionals. We use / to denote integer division and % for modulo
operation. No floating point division is performed in any of algorithms. The
division is always executed on positive integer arguments and produces inte-
ger number which is rounded towards zero. The standard naming scheme for
variables is used across all presented algorithms. We group related variables
together. The same letter is used to refer all variables of the group and the
actual variable is specified using subscript. Furthermore, some algorithms
use shared memory to cache the data stored in global or constant memory.
In such cases, we keep the variable name, but add superscript indicating the
memory domain. For instance, cSs points to the sine of the projection angle
stored in the shared memory. c is a group of variables storing the projection
constants. cs refers specifically the sine of the projection angle and the super-
script ·S indicates that the copy in shared memory is accessed. All variables
used across the algorithms are listed in Table 5, 6, 7. The superscripts used
to indicate memory segment are specified in Table 8.

Table 5: List of parameters used in code snippets

Var Type Description
np int Number of projections
nv int Number of slices reconstructed in parallel
nq int Number of pixels assigned per GPU thread
ns int The side of a pixel square reconstructed by a thread block
~nt int2 Dimensions of thread block
sp int Size of the larger projection block, indicates the size of caches holding projection constants

and hm values
sd int Size of data cache, specifies how many projection lines are cached
st int Number of threads assigned to cache a projection row, see section 6.3 and Table 14
si int Iterations required to completely cache a projection row (determined based ~nt, st, and

the used caching optimizations as explained in section 6.3)
~va float2 The position of rotation axis
cc float[] Constant array storing cosine values of the projection angles
cs float[] Constant array storing sine values of the projection angles
~ccs float2[] Constant array storing (cosine, sine) pairs for each projection angle
ca float[] Constant array storing coordinate of the rotational axis with applied per projection cor-

rection to compensate for possible mechanical displacements
cm float[] Constant array storing coefficients required to quickly compute hm

We use ~· symbol to denote all vector variables, i.e. float2, float4, etc.
Furthermore, all proposed algorithms are capable to reconstruct 1, 2, or 4
slices in parallel. If more than 1 slice is reconstructed, the accumulator
and a few other temporary variables use the floating-point vector format
to store values for multiple slices. These variables are marked with ·̃. All
arithmetic operations in this case are performed in vector form and affect



Table 6: List of indexes used in code snippets

Var Type Description
~mb int2 The index of a thread block within the computation grid. Referred as blockIdx in CUDA

or get group id() in OpenCL
~mt int2 The index of a thread with the thread block. Referred as threadIdx in CUDA or

get local id() in OpenCL
~mg int2 The index of a thread within the computation grid, i.e. ~mb ∗ ~nt + ~mt

~m′∗ int2 The re-mapped index, the number is specified in superscript if multiple mappings are used
~f∗g float2 The absolute coordinates of the reconstructed pixel according to the selected mapping,

usually: ~f ′g = ~m′g − ~va
~fb float2 The absolute coordinates of a pixel block (i.e. coordinates of the pixel processed by the

first thread of the block)
mp int For algorithms processing multiple projections in parallel, it defines a projection index in

a group
md int For algorithms caching the sinogram in shared memory, this is a mapping selecting offset

in the cache
ml int Linear addressing of threads in the thread block (mt.y∗nt.x+mt.x). It is another mapping

used for caching constants.

Table 7: List of variables used in code snippets

Var Type Description
h float The required projection bin (including offset from the center)
hi int The position of the required projection bin in the cache
hf float The floating-point representation of hi

hl float The offset from the center of bin (i.e. coefficient for linear interpolation)
hb float The bin required by the first thread of the block
hm float[] The smallest bin required by a thread block in the selected projection row
hx float[][] The cache storing the value of ca + fg .x ∗ cc−hm for each column of pixels processed by

a thread block (and for each of sd cached projections)
p∗ int Projection number (p) and projection iterators (pb, pi)
q∗ int Pixel block iterators

d̃ float[][] The cache storing a subset of sinogram required to process sd projections for the current
thread block

s̃ float[] Variable accumulating the impact of the projections. Defined as array if the thread is
responsible for multiple pixels.

r̃ float[][] The reconstructed slice

all slices. The vector multiplication is performed element wise as it would
be in CUDA and OpenCL. We use the standard C notation to refer array
indexes and components of the vector variables. The arrays are indexed from
0. For instance s̃[0].x refers to the first component of the accumulator. The
assignment between vector variable and scalars are shown using curly braces,
like {x, y} = s̃[0]. The floating point constants are shown without C type
specification. However, it is of utmost importance to qualify all floating-
point constants as single precision in the C code, i.e. using 0.5f in place
of 0.5. Otherwise the double-precision arithmetic will be executed severely
penalizing performance on majority of consumer-grade GPUs.



Table 8: Memory Domains

Superscript Domain

·G Variable in global GPU memory

·C Variable in constant memory

·S Variable in shared memory

To perform thread synchronization and to access the texture engine, the
algorithms rely on a few functions provided by CUDA SDK or defined in
the OpenCL specifications. To preserve neutrality of notation, we use abbre-
viated keywords to reference this functions. This list of used abbreviations
along with the corresponding CUDA and OpenCL functions are listed in Ta-
ble 9. Actually, the syntax of OpenCL and CUDA kernels is very closely
related. Only a few language keywords are named differently. It is a trivial
task to generate both CUDA and OpenCL kernels based on the provided
pseudo-code.

Table 9: CUDA/OpenCL functions

Function Description
sync Denotes a synchronization point. The further execution is blocked until all threads of the

block reach this point. It is implemented with syncthreads() command in CUDA and
barrier() with the CLK LOCAL MEM FENCE type in OpenCL

fence Enforces ordering of loads and stores. Equivalent to threadfence block() in CUDA and
mem fence() in OpenCL

tex2d 2D fetch from the texture mapped to the sinogram. It is implemented with tex2D() function
in CUDA and read imagef() in OpenCL.

shfl∗ A group of CUDA functions ( shfl, shfl up, shfl down, shfl xor) used to exchange data
between the threads of a warp [34]. The vector types are not supported by CUDA functions.
If shfl is applied to vector data, it is actually implemented as several calls to the corresponding
function using all vector components one after another. There is no AMD counterpart of
these functions.

floor Rounding towards negative infinity

We use integer division and modulo operations across the code listings.
These operations are very slow on GPUs and actually should be performed
as bit mangling operations instead. However, the optimizing compilers can
replace them automatically by the faster bit-mangling instructions. So, we
are free to use notation which is easier to read. There are a few other cases
where the optimization is left to the compiler.

3. Parallel Architectures

The architectures of nowadays GPUs are rather heterogeneous and in-
cludes multiple types of computational elements. The performance balance



between these elements is shifting with each release of a new GPU architec-
ture. To feed the fast computational units with data, a complex hierarchy of
memories and caches is introduced. But the memories are very sensitive to
the access patterns and the optimal patterns also differ between the hardware
generations [34]. In this section we briefly explain the GPU architecture and
elaborate differences between the considered GPUs with a focus on the as-
pects important to implement back projection efficiently. To simplify reading
for a broader audience, we use the more common CUDA terminology across
this paper.

3.1. Hardware Architecture

The typical GPU consists of several semi-independent Streaming Multi-
processors (SM) which share global GPU memory and L2 cache [35]. Several
Direct Memory Access (DMA) engines are included to move data to and
from system memory. Each SM includes a task scheduler, computing units,
a large register file, a fast on-chip (shared) memory, and several different
caches. There are a few types of computing units. The number crunching
capabilities are provided by a large number of Arithmetic Units (ALU) also
called Core units by NVIDIA. ALUs are aimed on single-precision floating
point and integer arithmetic. Some GPUs also include specialized half preci-
sion and double precision units to perform operations with these types faster.
There are also architecture-specific units. All NVIDIA devices include Spe-
cial Function Units (SFU) which are used to quickly compute approximates
of transcendent operations. The latest Volta architecture includes Tensor
units aimed on fast multiplication of small matrices to accelerate deep learn-
ing workloads [36]. AMD architectures adapt scalar units to track loop coun-
ters, etc [37]. The memory operations are executed by Load/Store (LD/ST)
units. The memory is either accessed directly or Texture units are used to
perform a fast linear interpolation between the neighboring data elements
while loading the data.

The computing units are not operating independently, but grouped in
multiple sets which are operating in a Single Instruction Multiple Data
(SIMD) fashion. Each set is able to execute the same instruction on mul-
tiple data elements simultaneously. Several such sets are included in SM
and, often, can be utilized in parallel. The SM scheduler employs data- and
instruction-level parallelism to distribute the work-load between all available
sets of units. However, it is architecture depended which combination of in-
structions can be executed in parallel. The simplified and generalized scheme



of GPU architecture is presented in Figure 2 and is further explained in the
next subsections.

3.2. Execution Model

The GPU architectures rely on SIMT (Single Instruction Multiple
Threads) processing model [34]. The problem is represented as a 3D grid
of tasks or threads in CUDA terminology. All threads are executing the
same code which is called kernel. The actual work of a thread is defined by
its index (x, y, z) within the grid. Typically, a mapping between a thread in-
dex and image coordinates is established and each GPU thread processes the
associated pixel or a group of pixels. Since memory access patterns matter,
finding a suitable mapping has a very significant impact on the performance.
In many practical applications, multiple mappings are used during the exe-
cution of a kernel. Particularly, all presented algorithms use 2 to 4 different
mappings during the kernel execution.

The grid is split in multiple blocks of the same size. The blocks are
assigned to a specific SM and are executed on this SM exclusively. Conse-
quently, the information between threads of the same block can be exchanged
using the fast shared memory local to SM. When a block is scheduled, all
threads belonging to this block are made resident on the selected SM and
all required hardware resources are allocated. A dedicated set of registers
is assigned to each of the threads. However, not all threads of the block
are executed simultaneously. The SM distributes resident threads between
computational units in portions of 32/64 threads which are called warps. All
threads of a warp are always executed simultaneously using one of available
sets of units. If the execution flow within the warp diverges, it is executed
sequentially: first all threads of the first branch are executed while others
are kept idle and, then, vice-versa. To achieve optimal performance it is
important to keep all threads of a warp synchronized, but the execution of
complete warps may diverge if necessary. Similarly, the memory access pat-
terns and locality are extremely important within a warp, less important
within a block, but rather irrelevant between different blocks. GPUs always
assign threads with consecutive indexes to the same warp and the thread
mappings are always constructed with these considerations in mind.

At each given moment, the SM executes a few warps while several others
are idle, either waiting for memory transaction to complete or for a set of units
to become available. This is one of the mechanisms used to hide latencies
associated with long memory operations. While one warp is set aside waiting



for the requested data, the computational units are kept busy executing other
resident warps. As the registers are assigned to all threads permanently and
are not saved/restored during scheduling, the switching of the running warp
inflicts no penalty.

3.3. Memory hierarchy

Compared to a general-purpose processor the ratio between computa-
tional power and throughput of the memory subsystem is significantly higher
on GPUs. To feed the computation units with data, the GPU architectures
rely on multiple types of implicit and explicit caches which are optimized for
different use cases. Furthermore, the maximum bandwidth of GPU memory
is only achieved if all threads of a warp are accessing neighboring locations
in memory. For optimal performance some architectures may require even
stricter access patterns.

There are 3 types of general-purpose memory available in the GPU. A
large amount of global memory is accessible to all threads of the task grid.
Much smaller, but significantly faster shared memory is local to a thread
block. The thread-specific local variables are normally hold in registers. If
there is not enough register space, a part of variables may be offloaded to
the local memory. The thread-specific, but dynamically addressed arrays are
always stored in the local memory (i.e. if array addresses can’t be statically
resolved during the compilation stage). In fact, the local memory is a spe-
cial area of the global memory. But the data will be actually written and
read to/from L1 or L2 cache unless an extreme amount of local memory is
required. Even then, access to variables in the local memory inflicts a se-
vere performance penalty compared to the variables kept in the registers and
should be avoided if possible.

To reduce the load on the memory subsystem, GPUs try to coalesce the
global memory accesses into as few transactions as possible. This can only
be realized if the threads of a warp are addressing adjacent locations in the
memory. The memory controller aggregates the addresses requested by all
threads of a warp and issues a minimal possible amount of 32- to 128-byte
wide transactions. These transactions are subject to alignment requirements
as well. It does not matter in which order the addresses are requested by the
threads of a warp. The maximum bandwidth is achieved if as few as possible
of such transactions are issued to satisfy the data request of the complete
warp. This was different in older hardware when the stricter access patterns
had to be followed. If it is not possible to implement coalesced access strategy,



the shared memory is often used as explicit cache to streamline accesses to
the global memory [38].

The shared memory is composed out of multiple data banks. The banks
are 32- or 64-bit wide and are organized in a such way that successive words
are mapped to successive banks. The shared memory bank conflict occurs
if the threads of a warp are accessing multiple memory locations belonging
to the same bank. The conflicts causes warp serialization and may inflict
a significant penalty to the shared memory bandwidth. Furthermore, the
achieved bandwidth depends on a bit-width of the accessed data. The Ke-
pler GPUs are equipped with 64-bit shared memory and only deliver full
bandwidth if 64-bit data is accessed. While the AMD Cypress and Tahiti
GPUs are equipped 32-bit shared memory, the performance is still consider-
ably improved if 64-bit operations are performed. Increasing the data size
beyond 64-bit has a negative impact on the performance on some architec-
tures. 128-bit loads from shared memory always cause bank conflicts on
NVIDIA GT200, NVIDIA Fermi, and all AMD architectures. We tackle the
differences between shared memory organization in sections 6.3 and 6.4.

Most of the GPU architectures provide both L1 and L2 caches. However,
the amount of the cache per compute element is quite low. On NVIDIA Fermi
and Kepler GPUs, both L1 cache and shared memory are provided using the
same hardware unit and the ratio between the size of L1 cache and the shared
memory is configured at compilation stage [35, 39]. Only buffers that are
read-only during a complete execution of a kernel are usually cached in L1.
This property is not always detected by the compiler and should be either
hinted in the code or enforced using a special CUDA intrinsic instruction [39].
There are two additional caches optimized for specific use-cases. The constant
memory is used to store parameters which are broadcasted to all threads of
the grid. For optimal performance 64-bit or 128-bit access is required [40].
The texture engine provides a cache optimized for spatial access. While the
line of L1 cache is typically 128-byte long, the texture cache operates with
lines of 32-bytes allowing to fetch the data from multiple rows of an image
as required to perform bi-linear interpolation.

3.4. Texture Engine

The texture engine associates a dimensional information with buffers in
the global GPU memory [41]. By doing so, it is able to interpret the memory
as a multi-dimensional object and perform implicit interpolation if a texel



with fractional coordinates is requested. Nearest-neighbor or linear inter-
polation modes are supported. The texture engines are able to work with
a variety of data types. Besides simple integer and floating-point numbers,
they are also capable to interpolate and return the values encoded in standard
vector types. The performance is defined by the number of texels processed
per time unit and is called texture filter rate. Up to a threshold, the filter
rate is independent from the actually used data type. The same number of
texels is returned per second if either 8, 16, or 32-bits are used to encode the
texel values. For the larger vector types the theoretical filter rate, however,
is not actually reached. Depending on the GPU architecture, a maximum
32-, 64-, or 128-bit values are processed at a full speed.

To achieve maximum performance it is also necessary to ensure the spa-
tial locality of the texture fetches. The locality is important at several levels.
At a block level it results in a high level of texture cache utilization. A more
dense access layout within a warp reduces the number of required transac-
tions to the texture cache. While it is not documented, the distribution of
the fetch locations between groups of 4 consecutive threads impacts perfor-
mance significantly if a bi-linear interpolation is performed. To verify it, we
developed a small benchmark using the techniques proposed by Konstantini-
dis and Cotronis for gpumembench and mixbench suites [40, 42]. Figure 3
shows two different thread assignments to fetch 16 texels from a 4-by-4 pixel
square. The fetched coordinates are always slightly shifted from the pixel
centers to ensure that the bi-linear interpolation is actually executed. There
is a little difference if 32-bit data is accessed. For 64-bit data, however,
the thread assignments following Z-order curve reach almost 100% of the
theoretical maximum while only 50% is achieved if simple linear layout is
used. Section 5.5 discusses the effect of the optimized fetch locality on a
performance of tomographic reconstruction.

We also used the developed benchmark to find the maximum size of
fetched data which is still filtered at full speed. Our results show that all
NVIDIA GPUs starting with Fermi benefit from the 64-bit texture fetches
if requests are properly localized. It is also supported by the latest of the
considered chips from AMD. However, the OpenCL kernel must be compiled
with OpenCL 2.0 support enabled. It is done by passing -cl-std=CL2.0 flag
to clBuildProgram() call. Otherwise, the full performance is only achieved
if the nearest-neighbor interpolation is performed. This is always the case
for older AMD devices. If the texture engine is configured to perform linear-
interpolation on 64-bit data, only the half of throughput is delivered on these



AMD architectures. On other hand, all AMD devices are able to deliver the
full performance using the 128-bit data if the nearest-neighbor interpolation
is utilized. The NVIDIA devices are limited by 64-bit in both cases.

3.5. Task partitioning

The number of resident threads directly affects the ability of the SM to
hide memory latencies. Each architecture limits the maximum number of
resident warps per SM. Since SM has only a limited amount of registers and
shared memory, the actual number of resident warps could be bellow this
limit. The ratio between the actual and the maximum number of resident
warps is called occupancy and has a significant impact on the performance.
The complexity of the kernel dictates how many registers is required per
thread and, hence, restricts the maximum amount of resident threads on the
SM. It is possible to target occupancy on NVIDIA platform. If a higher
occupancy is requested, the CUDA compiler either reduces the number of
used registers in a price of repeating some computations or offloads part of
the used variables in the local memory. Vice-versa, the compiler may per-
form more aggressive caching and pre-fetching if lower occupancy is targeted.
Both approaches may significantly improve the performance under different
conditions. The optimal occupancy depends on both, work-load and hard-
ware capabilities. On one hand, it should be high enough to ensure that the
SM scheduler always has warps ready to execute. On other hand, prefetching
may significantly improve performance of memory bound applications. Fur-
thermore, offloading variables to local memory will not necessarily harm the
performance if the local memory is fully backed by L1 cache. Consequently,
more registers can be made available for prefetching also without decreasing
occupancy. However, the shared memory available to applications is reduced
on Fermi and Kepler platforms if a large amount of L1 cache is dedicated
to the local memory. A very detailed study of the optimal occupancy under
different workloads is performed in the PhD thesis of Vasiliy Volkov [27]. We
study the effect of occupancy tuning on the performance of the back projec-
tion kernel in sections 5.7 and 6.9. Both reduced and increased occupancy
are found practically useful in different circumstances.

GPUs have varying limits on a number of threads allowed per block.
To achieve a higher occupancy, multiple thread blocks can be scheduled on
the same SM simultaneously. The maximum number of resident blocks is
architecture dependent and is further restricted by the requested amount
of shared memory. The required shared memory is not always proportional



to the size of a thread block. The larger blocks may require less shared
memory per thread. As the block is always made resident as a whole, some
configurations are better mapped to available resources while other leave part
of the memory unused.

3.6. Code Generation

Even the fast shared memory has a relatively high latency [28]. Conse-
quently, GPU vendors prvide several mechanisms to hide this latency and
preserve the high memory bandwidth. The thread is not stalled until the
executed memory operation is finished. The GPU scheduler launches the
operation, but proceeds issuing independent instructions from the execution
flow of the thread until the requested data is actually required. If the next
instruction in the flow depends on the result of the memory operation which
is not completed yet, the SM puts the thread aside and schedules another
resident thread as stipulated by SIMT execution model. For compute-bound
applications, the optimizing compiler re-arranges instructions to interleave
memory operations with independent arithmetic instructions and uses both
described mechanisms to avoid performance penalties due to memory laten-
cies [27].

If an application is memory bound, the compiler vice-versa groups mul-
tiple load operations together to benefit from streaming. The latency, then,
has to be hidden only a single time for all load operations which are streamed
together. This mechanism is of a great importance to perform texture fetches
as a texture cache hit reduces usage of memory bandwidth, but not the fetch
latency [34]. Furthermore, several 32-bit loads from the consecutive addresses
may be re-combined by a compiler in a single 64- or 128-bit memory in-
struction. It reduces the number of issued instructions and gives the warp
scheduler an opportunity to increase the Instruction Level Parallelism (ILP)
by launching additional instructions in the vacated execution slots. With
the Kepler architecture, this scheme may even double the shared memory
bandwidth by utilizing 64-bit memory banks more efficiently. Several papers
show a significant performance improvement also on other architectures [29].

The described optimizations are performed automatically by the compil-
ers from AMD and NVIDIA. The loops are unrolled and instructions are
re-arranged as necessary to increase the hardware utilization. The loop un-
rolling not only allows the compiler to optimize the instruction flow, but
also reduces the load on the ALUs. In particular, the computation of array



indexes is replaced by static offsets at compilation stage. In some cases, how-
ever, it is possible to further improve the generated code by enforcing the
desired unrolling factors and by targeting the occupancy. This is discussed
in section 6.9. Furthermore, the data layout may be adjusted in order to give
compiler more options in optimizing the code flow. The algorithm described
in section 5.6 relies on a large number of independent operations to compen-
sate the low occupancy. In section 6.8 we optimize the data layout to enable
the re-combination of memory instructions.

3.7. Scheduling

To provide high performance, the GPU architectures include multiple
components operating independently. Texture fetches, memory operations,
several types of arithmetic instructions are executed by different blocks of
GPU in parallel. Hence, the kernel execution time is not determined as a
sum of all operations, but rather is given by the slowest execution pipeline.
One strategy to implement an efficient algorithm is to balance operations
between available GPU blocks uniformly and minimize the time required to
execute the slowest pipeline. Using this methodology we were able to gain
significant performance improvements. Section 6.6 discusses balancing of
SFU and ALU operations to speed-up the linear interpolation on the Kepler
architecture. Two different back-projection algorithms are combined in sec-
tion 7.1 to balance the load across all major GPU subsystems. As result the
proposed hybrid approach outperforms the fastest of the algorithms by 40%
on Pascal and Maxwell architectures.

Each SM includes one or more warp schedulers which execute instructions
of resident warps. Each scheduler is able to issue either a single instruction
per-clock or at each clock to dual-issue two independent instructions from
the same warp. On most architectures the number of warp schedulers is syn-
chronized with the number of independent ALU units. All available units
are fully utilized if a single ALU instruction is scheduled by each warp sched-
uler at every clock cycle. The SM processor on Kepler, however, includes
6 sets of ALUs, but only 4 warp schedulers [39]. To achieve 100% utiliza-
tion all SM schedulers are expected at each second clock cycle to select two
independent instructions from the execution flow and dispatch them to 2 dif-
ferent sets of ALU units. The VLIW architecture adopted by the older AMD
GPUs requires 4 to 5 independent instructions in the flow for optimal perfor-
mance [43]. The flow of independent instructions and dual-issue capabilities
are also required to utilize multiple functional blocks of GPU in parallel.



Only a little official information is available about instructions which
can be schedulled in parallel. The CUDA C Programming Guide states
that SFUs are used to compute approximates of transcendent functions [34].
In fact, they are also used to perform bit-mangling, type-conversions, and
integer multiplication on the NVIDIA Kepler, Maxwell, and Pascal GPUs.
We developed a micro-benchmark to verify if certain instructions can be dual-
issued. The idea is to measure the throughput of each individual instruction
and, then, compare it to throughput of their combination. The instructions
are assumed to be executed by the same function unit if the combination
runs slower than the slowest of the individual instructions. In particular we
found out that NVIDIA GPUs starting with Kepler execute rounding, type
conversion, and bit-shift operations in parallel with ALU instructions, but
slow down the computation of sine and cosine approximates. Consequently,
we assume that SFUs are used to execute these operations. On Maxwell and
Pascal, the bit-wise operations also slow down ALU instructions slightly.
Both SFUs and ALUs are used in this case. However, the decrease is small
and additional ALU-operations are still possible to execute in parallel. There
is no parallelism of these operations on the AMD platform.

3.8. Synchronization

The GPU memory hierarchy and a few synchronization primitives are
used to efficiently coordinate work between threads. The fast shared mem-
ory is used to exchange information between threads of the same block. An
even faster shuffle instruction is available on NVIDIA GPUs since the Kepler
generation. It allows to exchange data stored in the registers of multiple
threads belonging to the same warp [39]. Both CUDA and OpenCL provide
a fast synchronization instruction which ensures that all threads of a block
have completed the assigned part of the work and reached the synchroniza-
tion point. This allows to split execution of a kernel in multiple phases with
different thread mappings. For example in the algorithm described in sec-
tion 6.2, the threads are first mapped to the elements of a cache and are used
to prefetch data from global memory. After synchronization the threads are
re-assigned to the pixels of output image and use the cached information to
compute their intensities.

The synchronization may restrict the ability of the SM schedulers to ben-
efit from the ILP parallelism if the groups of instructions aimed on different
functional units are separated by a synchronization primitive. Partial rem-
edy is to allocate more resident blocks to SM by increasing occupancy or



by using smaller blocks. Still, a well composed code usually results in bet-
ter performance if it allows the compiler to re-arrange execution flow and
dual-issue instructions.

3.9. Communication

Most GPUs include a pair of DMA engines and are able to perform data
transfers over the PCIe bus in both directions in parallel with kernel exe-
cutions. This, however, requires page-locked (non swappable) host memory.
While OpenCL does not define how the page-locked memory can be obtained,
in practice it can be done by allocating a host-mapped GPU buffer. This is
realized by calling clCreateBuffer with CL MEM ALLOC HOST PTR flag.
While only the host buffer is required in this case, the command allocates
also the GPU buffer. The memory overcommitting is, however, supported on
NVIDIA platform. Consequently, only the host memory is actually reserved.
The corresponding GPU buffer is never accessed and, correspondingly, the
GPU memory is not reserved. On the AMD platform, however, the mem-
ory is actually set aside for both buffers immediately. Consequently, the
amount of GPU memory available to application is reduced. To enable par-
allel data transfer and computations, double buffering technique along with
asynchronous CUDA/OpenCL API are typically used. The CUDA/OpenCL
events are used for synchronization.

In addition to the DMA engines used for communication with the host
memory, the professional series of GPUs also support a slave mode of DMA
operation. In this mode the other devices on the PCIe bus are able to
write data directly into the GPU memory. Starting with the Kepler micro-
architecture, this feature is supported by the NVIDIA Tesla cards using the
GPUDirect technology [44]. AMD provides the DirectGMA technology to en-
able the feature on the GCN-based AMD FirePro cards [45]. The GPUDirect
technology is already used in several MPI frameworks to speed-up commu-
nication in Infiniband networks [46].

3.10. Summary

We summarize the properties of target GPUs in Table 10. Besides the
hardware specification available in the vendor white papers, we present
architecture-specific information obtained using micro-benchmarking and
further investigate the performance balance of different operations. Only



characteristics important to implement fast back-projection kernel are in-
cluded. For this reason, we only report throughput of the floating-point,
bit-mangling, and type-conversion instructions.

Compared to the GT200, the Fermi architecture significantly improved
the arithmetic capabilities, but the texture filter rate has not changed. In-
stead, the texture units got the ability to fetch 64-bit data at full speed. The
Fermi GPUs also lost the capability to dual-issue instructions from the same
warp and are the most restricted architecture of the considered ones con-
cerning the ability to schedule instructions to different execution pipelines in
parallel. Consequently, the Fermi performance is likely improved if the num-
ber of the required instructions is reduced. One option is to organize the data
in a way allowing wider 64/128-bit memory operations and texture fetches.
The Kepler architecture massively improved the performance of the texture
engine. But the throughput of integer, bit-mangling, and type-conversion
operations has actually slowed down compared to the Fermi devices. Fur-
thermore, the ILP become a necessity for optimal performance. On Pascal,
the amount and performance of the shared memory has doubled. While the
amount of available registers has not changed, the generated code is typically
requires less registers. Consequently, it is either possible to achieve higher
occupancy or execute more sophisticated kernels at the same occupancy.

There is a few important differences between NVIDIA and AMD plat-
forms. AMD provides less control over the code-generation. The NVIDIA
compiler can be parametrized to use less registers for generated code. This
option is not available for AMD. Neither of the considered AMD devices sup-
port the half-precision extension of the OpenCL specification. While we can
use the smaller data representation to reduce texture and shared memory
bandwidth on NVIDIA platform, it is not possible to achieve it with AMD.
On the other hand, the AMD devices are capable to perform full-speed tex-
ture filtering also using 128-bit data if the nearest-neighbor interpolation is
selected. Furthermore, the ratio between the shared memory throughput and
the performance of the texture engine is 2 - 4 times higher on AMD devices.
Consequently, it is more likely that caching of the fetched data in the shared
memory will result in performance improvements. The organization of AMD
Cypress GPUs differs from the other considered architectures significantly.
It has very slow constant memory and relies on ILP parallelism extensively.
Five instructions has to be scheduled at each clock cycle for optimal per-
formance. Vice-versa the GCN-based devices do not provide ILP. There is
also no parallelism between floating-point and bit-mangling/type-conversion



instructions. The throughput of arithmetic operations is comparatively slow
and is bottleneck for the proposed algorithms. There are also minor dif-
ference between two generation of GCN platform. The first generation of
GCN chips performs better if 64-bit operations are performed on the shared
memory. This is not required in the second generation of the architecture
anymore. Starting with GCN2, the AMD devices are capable to perform
64-bit texture fetches at full pace also if bi-linear interpolation is employed.

To build an efficient implementation of the algorithm it is important to
account for the described architectural differences. Across all architectures
a good locality of the texture fetches has to be ensured and optimal access
patterns to global and shared memory has to be followed. It is necessary
to adjust the algorithm flow to balance the load between different execution
pipelines according to their hardware capabilities. Finally, also the right
balance between ILP, streaming memory operations, and achieved occupancy
has to be found.

4. Tomographic Reconstruction

At synchrotron imaging beamlines, information about X-ray attenuation
or/and phase changes in the sample is used to reconstruct its internal struc-
ture. The objects are placed on a rotation stage in front of a pixel detector
and rotated in equiangular steps. As the object rotates, the pixel detector
registers a series of two-dimensional intensity images of the incident X-rays.
Typically the X-rays are not detected directly, but converted to visible light
using a scintillator placed between the sample and pixel detector. Then,
the conventional CCD cameras are used to record intensities which actually
correspond to projections of the sample volume. Due to the rather large
source-to-sample distance, imaging at synchrotron light sources is usually
well described by a parallel-beam geometry. The beam direction is perpen-
dicular to the rotation axis and to the lines of the pixel detector. Therefore,
the 3D reconstruction problem can be split into a series of 2D reconstructions
performed with cross-sectional slices. An origin of coordinate system coin-
cides with center of sample rotation stage and rotation axis is anti-parallel
to gravity. To reconstruct a slice, the projection values are ”smeared” back
over the 2D cross section along the direction of incidence and are accumu-
lated over all projection angles. To compensate blurring effects, high-pass
filtering of the projection data is performed prior to back projection [21].



Table 10: List and specification of considered GPU architectures

NVIDIA GeForce [34] AMD Radeon [47]
GTX2951 GTX580 GTX680 Titan GTX980 Titan X HD59701 HD7970 R9-290

Architecture GT200 Fermi Kepler Kepler Maxwell Pascal Cypress Tahiti Hawaii
Architecture Code Name GT200 GF110 GK104 GK110 GM204 GP104 VLIW5 GCN1 GCN2
Release Year 2009 2010 2012 2013 2015 2016 2009 2012 2013
Reference [48] [35] [49] [39] [50] [51] [52] [37] [37]

Global Memory
Global Memory (GB) 0.9 1.5 2 6 4 12 1 3 4
Memory Bandwidth (GB/s) 112 192 192 288 224 480 128 264 320
L2 Cache (KB) - 768 512 1536 208 3072 512 768 1024
L2 Bandwidth (GB/s) - 296 515 763 641 1351 371 710 970

Execution Units
Number of SM 30 16 8 14 16 28 20 32 40
ALU Reference Clock (MHz) 1242 1544 1006 837 1126 1417 725 925 947
ALU Max Turbo Clock (Mhz) - - 1110 1202 1392 1911 - - -
ALU Benchmark Clock (MHz)3 1242 1544 1006 993 1252 1759 725 925 947
Warp Schedulers (per SM) 1 2 4 4 4 4 1 5 5
Max Instructions per Warp 2 1 2 2 2 2 5 1 1
ALU Units (per SM) 8 2x16 6x32 6x32 4x32 4x32 16x4 4x16 4x16
SFU Units (per SM) 2 4 32 32 32 32 16 - -
Texture Units (per SM) 2.662 4 16 16 8 8 4 4 4
ILP Required for Peak GFlops Yes No Yes Yes No No Yes No No

Hardware resources
Warp Size 32 32 32 32 32 32 64 64 64
Max Resident Warps (per SM) 32 48 64 64 64 64 24 40 40
Shared Memory (KB/SM) 16 16-48 16-48 16-48 96 96 32 64 64
Registers (KB/SM) 64 128 256 256 256 256 256 256 256
Max 32-bit regs. per thread 128 63 63 255 255 255 248 256 256
Regs. Per Thread at Full Occupancy 16 21 32 32 32 32 40 25 25
Shared & Constant Memory
Shared Memory Banks 16 32 32 32 32 32 32 32 32
Sh.Mem Bank Width (bits) 32 32 64 64 32 32 32 32 32
Sh.Mem Bank Broadcasts Yes Yes Yes Yes Yes Yes No Yes Yes
Speed-up using 64-bit Loads4 - - 100% 100% - - 15%4 40% -
Conflict-free Loads (up to, bits) 32 64 128 128 128 128 64 64 64
Sh.Mem Max Bandiwdth (GB/s) 1324 1581 2060 3559 2564 6304 1856 3789 4849
C.Mem. Max Bandwidth (GB/s)5 875 1511 1980 3120 4186 11500 928 7578 9697
Instruction throughput
Units executing FP-insructions ALU,SFU ALU ALU ALU ALU ALU ALU,SFU ALU ALU
Units executing bit-shifts6 ALU ALU SFU SFU ALU,SFU ALU,SFU SFU ALU ALU
Units executing type-conversions6 ALU ALU SFU SFU SFU SFU SFU ALU ALU
FP Performance (GFlops)7 9948 1581 3090 5338 5128 12608 2320 3789 4849
Bit-shift Performance (G-ops) 331 395 258 444 1282 3152 232 1894 2424
Type-mangling performance (G-ops)9 331 395 258 444 641 1576 232 189410 242410

Performane of Texture Engine
Texture Engine (GT/s) 51 49 129 222 160 394 58 118 152
TE, 64-bit Data, Bi-linear (GT/s)6 25 49 123 204 156 398 26 55 113
TE, 64-bit Data, Nearest (GT/s)6 25 50 132 212 156 400 52 103 131
TE, 128-bit Data, Nearest (GT/s)6 12 25 70 114 79 200 49 116 147
Performance Ratios
Constant to Shared Memories 1 1 1 1 2 2 0.5 2 2
C.Mem to Texture (Words/Texels) 6.5 8 4 4 8 8 4 16 16
Sh.Mem to Texture (Words/Texels) 6.5 8 4 4 4 4 8 8 8
Type-conv to Texture (Ops/Texels) 6.5 8 2 2 4 4 4 16 16
GFlops to Texture (Ops/Texels) 19.4 32 24 24 32 32 40 32 32
GFlops to Sh.Mem (Ops/Words) 3 4 6 6 8 8 5 4 4
GFlops to Type-conversion 3 4 12 12 8 8 10 2 2

The presented numbers are either taken from the referenced programming guide and specifications or computed based on the other
presented values. All exceptions which are obtained using micro-benchmarking are indicated with footnotes.
1 The characteristics for a single GPU core are given
2 On GT200 the texture units are not included in SM, but are part of Texture Clusters which includes several SM
3 GPUBoost technology adjusts clock according to load and temperature. In this row we specify the approximate clock rate during the
benchmarks
4 Using 64-bit loads are only faster if two shared memory operations can’t be combined in a single VLIW instruction
5 On NVIDIA platform the bandwidth of constant memory is obtained with benchmarking
6 Measured using micro-benchmarking
7 MAD/FMA are counted as two operations
8 GT200 is capable to launch 4 floating-point multiplications per SFU
9 Rounding operations and converting between 32-bit integer and floating-point types
10 Our measurements presented here show 4-times higher performance when AMD lists in the specification



The typical reconstruction data flow using parallel accelerators is repre-
sented on Figure 4. The projections are loaded into the system memory either
from a storage facility or directly from a camera and, then, transferred into
the GPU memory before executing pre-processing or reconstruction steps.
From cameras equipped with PCIe-interface it is also possible to transfer
the projections directly into the GPU memory using GPUDirect or Direct-
GMA technologies. The later is supported by UFO framework [15]. The
loaded projections are pre-processed with a chain of filters to compensate
the defects of optical system. Then, the projections are rearranged in or-
der to group together the chunks of data required to reconstruct each slice.
These chunks are called sinograms and are distributed between parallel ac-
celerators available in the system in a round-robin fashion. Filtering and
back-projection on each slice are performed on each GPU independently, the
results are transferred back, and are either stored or passed further for on-
line processing and visualization. To efficiently utilize the system resources,
usually all described steps are pipelined. The output volume is divided into
multiple subvolumes, each encompassing multiple slices. The data required to
reconstruct each subvolume is loaded and send further trough the pipeline.
While next portion of the data is loaded, the already loaded data is pre-
processed, assembled in sinograms, and reconstructed. The preprocessing is
significantly less compute-intensive compared to the reconstruction and is
often, but not always, performed on CPUs. OpenCL, OpenMP, or POSIX
threads are used to utilize all CPU cores. The pre-processed sinograms are,
then, distributed between GPUs for reconstruction. For each GPU a new
data pipeline is started. While one sinogram is transferred into the GPU
memory, the sinograms already residing in GPU memory are first filtered,
then back projected to the resulting slice, and finally transferred back to the
system memory. Event-based asynchronous API and double-buffering are
utilized to execute data transfer in parallel with reconstruction. Basically,
such approach allows to use all system resources including Disk/Network
I/O, PCIe bus, CPUs, and GPUs in parallel.

A single row from each of the projections is required to reconstruct a slice
of output 3D volume. These rows are grouped together in a sinogram. For
the sake of simplicity, we refer to these rows as projections while discussing
reconstruction from sinograms. Each slice is reconstructed independently.
First, each sinogram row is convolved with a high-pass filter to reduce blur-
ring - an effect inherent to back-projection. The convolution is normally
performed as multiplication in Fourier domain. The implementation is based



on available FFT libraries. NVIDIA cuFFT is used on CUDA platform and
either AMD clFFT or Apple oclFFT is utilized for OpenCL. For optimal
FFT performance, multiple sinogram rows are converted to and from FFT
domain together using batched transformation mode. After filtering, the
buffer with filtered sinograms is either bind to texture on CUDA platform
or copied into the texture if OpenCL is used. The pixel-driven approach is
used to compute back-projection. For each pixel (x, y) of the resulting slice,
the impact of all projections is summed. This is done by computing the
positions rp where the corresponding back projection rays are originated and
interpolating the values of projection bins around this position.

If α is an angle between consecutive projections, the positions are com-
puted as follows:

rp(x, y) = x · cos(pα)− y · sin(pα) (1)

As computation of trigonometric function is relatively slow on all GPU
architectures, the values of cos(pα) and sin(pα) are normally pre-computed
on CPU for all projections, transferred to GPU constant memory, and, then,
re-used for each slice. Assuming this optimization, the back projection per-
formance is basically determined by how fast the interpolation could be made.
Two interpolation modes are generally used. The nearest neighbor interpola-
tion is faster and better at preserving the edges while the linear interpolation
reconstructs the texture better. While more sophisticated interpolation algo-
rithms can be used as well, they are significantly slower and are rarely if ever
used. All reviewed reconstruction frameworks rely on GPU texture engine
to perform interpolation. This technique was first proposed in the beginning
of the nineties for the SGI RealityEngine [53].

5. Back-projection based on Texture engine

The standard implementation described in previous section performs
fairly good. The compilers included in the CUDA Framework and AMD
APPSDK are optimize the execution flow automatically. The loops are un-
rolled and the operations are re-arranged to allow streaming texture loads
as explained in the section 3.6. Still, the default implementation does not
utilize all capabilities of texture engine and significant improvement can be
achieved on all architectures.



5.1. Standard version

First, we will detail how the standard implementation works. Each GPU
thread is responsible for a single pixel of output slice and iterates over all
projections to sum the contribution from each one. At each iteration, a pro-
jection is performed to find a coordinate where the ray passing through the
reconstructed image pixel hits the detector. The value at the corresponding
position in the sinogram row is fetched using the texture engine and summed
up with the contributions from other projections. The texture engine is con-
figured to perform either nearest-neighbor or linear interpolation as desired.
The projection is computed according to equation 1. To align the coordinate
system with rotational axis, the position of the rotational axis is first sub-
tracted from the pixel coordinates and, then, added to the computed detector
coordinate to find the required position in the sinogram. To compensate for
possible distortions of imaging system during the experiment, the rotational
center is not constant, but may include per-projection corrections. Sine and
cosine of each projection angle as well as the corrected position of the rotation
axis are read from a buffer in the constant memory which is generated dur-
ing the initialization phase. The computation grid is split in square blocks
of 16-by-16 threads. It results in optimal occupancy across all considered
platforms. The corresponding pseudo-code is presented in Algorithm 1.

Input: Texture and the projection constants cC∗ . Dimensions (n∗) and parameters
(v∗) as specified in Table 5. The indexes (m∗) and other used variables are
described in Table 6 and 7

Output: Reconstructed slice r̃G

begin
r̃ = 0
~fg = ~mg − ~va
for (p = 0; p < np; p += 1)

h = cCa [p] + fg.x ∗ cCc [p]− fg.y ∗ cCs [p]
r̃ += tex2d(h + 0.5, p + 0.5)

end

r̃G[mg.y,mg.x] = r̃

end

Algorithm 1: Standard implementation of the back-projection kernel

The CUDA platform supports two slightly different approaches to manage
textures: the texture reference API and the texture object API [34]. The tex-
ture reference API is universal and is supported by all devices. The texture



object API is only supported since Kepler architecture. While the reference
API can be used on all devices, as we found out the object API outperforms
it on the devices with compute compatibility 3.5 and later. Therefore, we
use the reference API for GT200, Fermi, and the first generation of Kepler
devices and the object API for all newer architectures.

5.2. Multi-slice reconstruction

The texture engines integrated in all recent generations of GPUs are
capable filter 8-byte data at the full pace, see section 3.4. The standard
reconstruction algorithm can benefit from this feature only if changed to
double-precision for better accuracy. But this have a little use in practice. In
parallel tomography, however, exactly the same operations are performed for
all the reconstructed slices. Therefore, it is possible to reconstruct multiple
slices in parallel if the back projection operator is applied to a compound
sinogram which encodes bins from the several individual sinograms as vec-
tor data. Particularly, it is possible to construct such sinogram using float2
vector type and interleave values from one sinogram as x components and
from another as y, see Figure 5. With float2 -typed texture mapped on this
interleaved sinogram, it is possible to fully utilize the bandwidth of the tex-
ture engine and reconstruct two slices in parallel. The interleaving is done
as an additional data preparation step between filtering and back projection
steps. The back projection kernel is, then, adjusted to use the float2 type
and writes the x component of the result into the first output slice and the y
component into the second. There is a considerable speed-up on all relevant
architectures as can be seen on Figure 6.

5.3. Using half-precision data representation

Since the NVIDIA texture engine is currently limited to 8-byte vectors,
the proposed approach can’t be scaled to 4 slices if the single-precision input
is used. However, CUDA supports half-precision data type which encodes
each floating-point number using 16 bits only. While reduced precision might
affect the quality of reconstruction, the majority of cameras has only a dy-
namic range of 16 bits or bellow. High-speed cameras actually used for
time-resolved synchrotron tomography have even a lower resolution of 10-12
bits only. Therefore, using a half-precision representation to store the input
data should have a limited impact on the resulting image quality if all further
arithmetic operations are performed in single-precision. Unfortunately, the
half-precision textures are not supported in the latest available version of



CUDA yet (CUDA 8.0). While one can store the half-precision numbers in
the GPU memory, it is impossible to map the corresponding texture. Still,
it is possible to speed-up the reconstruction if the nearest-neighbor interpo-
lation mode is selected. After filtering, the sinograms are down-sampled to
the half-precision format and interleaved. The texture-mapping is created
using the float2 data type. Upon request the texture engine returns the
nearest value without performing any operations on it. Therefore, the ap-
propriate data is returned even if an incompatible format is configured. It is
important that the data size is correct. To avoid further penalty to the pre-
cision, the half-precision numbers are immediately casted to single-precision
using half22float2 instruction and all further operations are performed in
single-precision as usual.

The Figure 6 indicates a significant speed-up on all NVIDIA architectures
except Kepler. As can be seen from Table 10, the type casting is very slow
on Kepler and caps the performance gains. The proposed method is also not
viable on AMD platform. Neither of the considered AMD GPUs support
half-precision extension of OpenCL specification. Without this extension,
no hardware instruction is available to convert between half-precision and
single-precision. While such conversion can be performed using several bit
mangling operations, it would cap the possible performance gain as well.

The penalty to the quality of the reconstruction induced by reduced pre-
cision is evaluated in Figure 7. For synthetic Shepp Logan phantom it is
negligible. However, the behavior for the real-world measurements may be
different, especially if projections are obtained using a camera with high dy-
namic range. As the optimization proposed in this subsection changes the
reconstruction results, it is important to verify that the achieved quality is
still satisfactory for the considered application.

5.4. Efficiency of the standard algorithm

The Figure 6 evaluates efficiency of texture engine utilization. While
performance in a single-slice processing mode is close to theoretical maximum
on a majority of the considered architectures, the efficiency drops significantly
if multiple slices are reconstructed in parallel. The AMD cards and the cards
based on the NVIDIA Kepler architecture show sub-optimal performance
also in a single-slice reconstruction mode.

As was discussed in section 3.7, GPU architectures include multiple func-
tional blocks operating independently. The performance of the GPU applica-
tion is typically restricted by the slowest and/or most loaded of these blocks.



Secondly, complex algorithms require a large amount of hardware resources
like registers and shared memory. Large footprint on resources may constrain
parallelism and, consequently, limit an GPU ability to hide memory laten-
cies and schedule load across all available functional units. The discussed
algorithm relies on:

• Texture engine to fetch and interpolate data

• ALUs to find the ray incidence point

• Constant memory to load projection constants

• The SFU units are used for type conversions and integer multiplication
on the recent NVIDIA devices. The major load is from conversion be-
tween half- and single-precision formats in 4-slice reconstruction mode.
The SFUs are also used for addressing constant memory arrays and
to convert a loop index to the texture-coordinate along the projection
axis.

The standard algorithm has a small register footprint and all GPUs pro-
vide enough computing power to find incidence points. The performance of
the texture engine, however, is sub-optimal across all architectures if multi-
slice reconstruction is performed. The reason is the bad locality of the texture
fetches. The AMD GPUs are also restricted by the performance of the tex-
ture cache if only a single-slice is reconstructed. On top of that, the Kepler
and AMD VLIW systems have comparatively slow constant memory which
also bounds the performance bellow the theoretical throughput. Finally, the
low SFU performance on the Kepler GPUs restricts the reconstruction if
half-float format is used to store the sinograms. More information about
GPU capabilities and the relative performance of GPU components is given
in Table 10.

5.5. Optimizing locality of texture fetches

The standard algorithm maps each GPU thread to a single pixel of output
slice. The default mapping is linear: the thread with coordinates (x, y) in
a computational grid is used to reconstruct the pixel with coordinates (x, y)
in a slice. Since every thread in a wrap reconstructs consecutive pixel along
x axis, a large range of sinogram bins is always accessed. Up to 16 different
locations is fetched by a warp if 16-by-16 thread blocks are utilized. As it



Table 11: Queries to texture cache with standard and optimized mapping on NVIDIA
GeForce Titan X (Pascal)

Slices Approach Queriesa Tex. hitsb L2 hitsc Perf.d

1
Standard 0.43 96.0% 89.0% 381 GU/s
Remapped 0.39 95.5% 89.4% 376 GU/s

2
Standard 0.61 91.5% 88.6% 534 GU/s
Remapped 0.53 93.8% 88.3% 724 GU/s

The table compares efficiency of the texture
fetches using standard linear mapping scheme and
the new scheme with improved locality. The mea-
surements obtained using NVIDIA profiler for the
1- and 2-slice reconstruction modes. The table
lists: a number of 32-byte queries issued to tex-
ture cache per fetch, b hit rate of the texture
cache, c L2 cache hit rate, d achieved reconstruc-
tion performance in giga-updates per second.

was discussed in the section 3.4, the locality of fetches within a block, a warp,
and also within a group of 4 consecutive threads is important to keep the
texture engine running at full speed.

To improve the locality of the texture fetches, a new thread-to-pixel map-
ping is proposed. The thread blocks assignments are kept exactly the same
as in the standard version. I.e. each block of 256 threads is responsible for an
output area of 16-by-16 pixels. However, this area is further subdivided into
4-by-4 pixel squares. Within each square, the threads are mapped along Z-
order curve as illustrated in Figure 9, left. Then, a group of 4 threads fetches
positions in a sinogram row which are maximum 3 bins apart. And only
up to 5 elements are required to perform corresponding linear interpolations.
The data required for 16 threads is limited to 8 bins only. Table 11 shows the
effect of remapping for the 1- and 2-slice reconstruction on NVIDIA Titan X
GPU. According to Figure 6 a significant speed-up is also achieved on other
architectures unless the performance is also capped by other factors.

The pseudo-code to compute the new thread indexes is given in Algo-
rithm 2. The only required modification in Algorithm 1 is to use the updated
indexes m′t in place of ones reported by CUDA/OpenCL.

5.6. Optimizing memory bandwidth

Even though the new thread mapping gives a significant speed-up on a
majority of considered architectures, the performance on Kepler and AMD



Input: ~mt is the original mapping as reported by CUDA/OpenCL
Output: ~m1

t is a new mapping proposed in section 5.5 to improve locality of the
texture fetches. mp and ~m2

t define an alternative mapping allowing also
to reduce the load on constant memory as explained in section 5.6.

begin
/* Each thread is responsible for one of 4 pixels laying within a small 2x2 pixel

square which is in its own right is one of 4 squares composing the larger 4x4

pixel block. Here we determine the sequential number of pixel in small

square, the sequential number of the small square in the larger pixel block,

and the sequential number of these block. */

blockn = mt.y
squaren = mt.x / 4
pixeln = mt.x % 4
/* Converting the sequential number to x,y coordinates. */

~block = {blockn % 4, blockn / 4}
~square = {squaren % 2, squaren / 2}
~pixel = {pixeln % 2, pixeln / 2}

/* Compute the actual pixel offset for the first mapping */

~m1
t = 4 ∗ ~block + 2 ∗ ~square + ~pixel

/* Compute the projection and pixel offset for the second mapping */

~m2
t = 2 ∗ ~square + ~pixel

m2
t .x += 4 ∗ block.x

mp = block.y

end

Algorithm 2: Optimizing thread mapping for the better cache locality and reduced load
on constant memory

VLIW GPUs is still bound by the slow constant memory. To process a
projection, GPU threads load several geometric constants to locate point of
incidence as defined in equation 1. These constants can be re-used multiple
times if each GPU thread would reconstruct several pixels. Since pixels are
reconstructed independently, it will also increase the number of independent
instructions in the execution flow and improve a scheduler ability to hide
memory latencies and to issue multiple instructions per clock. There are two
approaches how to adapt thread-to-pixel mapping. Either the number of
threads in a computational grid is reduced proportionally or a new mapping
scheme is constructed in a way that the same amount of threads is running
but each thread contributes to multiple resulting pixels. The later can be
achieved by processing several projections in parallel. Then, each thread is
responsible for a group of pixels but iterates over a subset of all projections
only. Another thread would contribute to the same group of pixels but from



a different subset of projections.
Both methods perform similarly if properly optimized for the target GPU.

Using the second approach, however, the dimensions of computational grid
stay unchanged. Consequently, it has advantage for region of interest (ROI)
and small-scale reconstructions. For this reason, we focus on this method
and elaborate how it is implemented and tuned to run efficiently across plat-
forms. To preserve good locality of texture fetches, the mapping described
in previous section is adapted with small changes. The thread blocks assign-
ments are kept the same. Each block is responsible for an output area of
16-by-16 pixels and this area is further subdivided into 4-by-4 pixel squares.
In contrast to original mapping, however, 64 threads are assigned per square.
Each thread is responsible to compute a contribution to the pixel value from
a quarter of all available projections. Hence, each thread processes 4 pixels
and each pixel is reconstructed using 4 threads. To avoid costly atomic opera-
tions, the contributions of the projection subsets are summed independently.
Then, the threads are re-assigned to perform reduction in the shared memory
and compute the final value of a pixel. To preserve a good spatial locality of
the texture fetches, 4 neighboring projections are processed in parallel and
the threads step over 4 projections at each iteration step.

There are 256 threads in a block and 64 threads are assigned to recon-
struct each 4-by-4 pixel square. Therefore, 4 such squares are processed in
parallel and a complete set of 16 squares requires 4 iterations. Figure 8 shows
several possible sequences to serialize processing. The first mapping is sparse
and results in a reduced cache hit rate as compared to the other options.
Since only a single pixel coordinate has to be incremented in a pixel loop,
the third option requires less registers compared to the second. While the
second mapping has a better access locality within the 64-thread warps of the
AMD platform, it does not affect performance in practice. On other hand,
the register usage is very high in multi-slice reconstruction modes and the
extra registers cause reduced occupancy or the spillage of registers into the
local memory. Therefore, the third approach is preferred.

A request to multiple locations in the constant memory by a warp is
serialized on NVIDIA platform. To avoid such serialization, all threads of
a warp are always assigned to the same projection. The following mapping
scheme is adopted. The lowest 4 bits of the thread number in a block define
the mapping within a 4-by-4 pixel square. A group of 16 threads follows
Z-curve as explained in the section 5.5. Next 2 bits define a square and the
top 2 bits define the processed projection. Figure 9 illustrates the proposed



mapping and Algorithm 2 provides the corresponding pseudo-code.
The pseudo-code for the complete approach is presented in Algorithm 3.

There are two distinct processing steps. First the partial sums are computed
in an 4-element array. It is declared as a local variable and both NVIDIA and
AMD compilers are able to back it with registers because of the fixed size.
The outer loop starts from the first projection assigned to a thread and steps
over the projections which are processed in parallel. The large loop-unrolling
factor requested with pragma preprocessor directive has a positive impact on
performance, especially on Kepler architecture. At each iteration constants
are loaded and inner loop is executed to process 4 pixels the thread is respon-
sible for. After completion of all projections, the reduction loop is executed.
The partial sums are written into shared memory and reduction is performed.
To avoid non-coalesced global memory writes, first all results are stored in a
shared memory buffer r̃S and, then, written in the coalesced manner. The
synchronization is needed when switching different mapping modes. Since
each reduction is performed by a single warp only, it is sufficient to prevent
compiler from reordering read and write operations in-between of reduction
steps using fence operation. Alternatively, the shuffle operation may be
utilized to perform reduction on Kepler and newer NVIDIA architectures.
Then, neither fence nor if -condition are required. The reduction loop using
the shuffle instruction is shown in Algorithm 4.

On GTX295 using CUDA6, there are a few glitches significantly affecting
performance. The fence instruction prevents unrolling of the reduction loop.
Consequently, the array with partial sums is referenced indirectly using the
loop index. This forces the compiler to allocate array in the local memory
instead of using registers and causes enormous penalty to the performance.
Therefore, a standard syncthreads is used instead. The loop is also not
unrolled if the inner reduction loop is implemented directly as written in
Algorithm 3. The following formulation causes no issues:

for(j = 0; j < 2; j++) {

i = 2 >> j;

...

}

The GPU constant memory is optimized with assumption that always the
same constants are accessed by all threads of a computational grid. Since
the new algorithm goes over several projections in parallel, this assumption
is not valid any more. While the proposed mapping avoids major penalty
due to warp serialization, slow constant memory is still a bottleneck on older



AMD devices. To avoid performance penalty, faster and larger shared mem-
ory is used instead in this case. The projection constants are initially stored
in global GPU memory and, then, are cached in shared memory. The Al-
gorithm 5 contains alternative implementation of the accumulation step for
Algorithm 3. Shared memory is additionally configured to store constants
for up to 256 projections. In fact, the same shared memory buffer may be
used in the both steps of algorithm, first for caching constants and later for
a data exchange while performing reduction. An outer loop iterating over
blocks of 256 projections is introduced. At each iteration, the threads of a
block are, first, used to read the constants from global memory and fill the
cache. To allow 64-bit loads, we use a float2 variable to store values of both
trigonometric functions. After synchronization, the inner projection loop is
started to compute partial sums. The inner loop is implemented as in Algo-
rithm 3 with only difference that constants are loaded from shared memory.
This method, however, cannot be used across all platforms. While major-
ity of NVIDIA GPUs showed similar performance for both implementations,
Kepler-based GPUs perform better if constant memory is utilized.

5.7. Optimizing occupancy

Similarly to the standard algorithm, the optimized version can be eas-
ily adapted to process 2- and 4-slices in parallel. Only accumulators and
intermediate buffers have to be declared with the appropriate vector type.
However, the usage of hardware resources grows significantly if multiple slices
are processed in parallel. In a 4-slice mode, 16 registers (32-bit each) are re-
quired only to accumulate the partial sums. The large register footprint re-
duces occupancy and may result in a sub-optimal performance unless treated
properly.

The register allocation is completely out of developer control on AMD
platform. NVIDIA allows to target the desired number of blocks executed by
each SM in parallel. It is done using launch bounds keyword. The CUDA
optimizer, then, changes the code generation algorithm to meet the target. It
prevents data pre-fetching and also may result in an increased computational
load and/or in a more intensive usage of L1 caches as a part of local variables
is offloaded to local memory. On Fermi and Kepler architectures, 64 KB of on-
chip memory is split between L1-cache and shared memory according to the
user-specified configuration. By default 48 KB is assigned to shared memory
and only 16 KB is left for L1 cache. If the shared memory consumption is low
enough, it is possible to re-balance this ratio and achieve a high occupancy



on one hand and ensure that there is enough L1 cache to back all the required
local memory on the other.

The Table 12 summarizes resource consumption, theoretical occupancy,
and achieved performance on the NVIDIA GTX Titan with and without
resource restriction. The results show that improved occupancy may bring
a considerable speed-up also if significant number of variables has to be of-
floaded to local memory, provided it is backed by L1 cache. Without restric-
tion the generated code requires 38 registers if 2-slice reconstruction mode is
enabled. This limits the number of resident threads to 1724 or 6 blocks and
results in 75% occupancy. The performance is improved by 15% if CUDA
compiler is instructed to allow execution of 8 blocks, i.e. running at full oc-
cupancy. To fulfill this requirement the compiler puts 6 variables in the local
memory. However, 16 KB of L1 cache is not enough to assure backing of the
required local memory for 8 resident blocks. On other hand, only 4 KB of
shared memory is required per block for temporary buffers or 32 KB for all 8
blocks. Therefore, the ratio between L1 cache and shared memory is shifted
to allow 32 KB of L1 cache. This is done using cudaFuncSetCacheConfig
command with cudaFuncCachePrefer argument to specify preference for L1
cache. The recommended restrictions for other architectures are summarized
in Table 13

Both shared and constant memories are comparatively slow on Kepler
with respect to the performance of the texture engine, see Table 10. Fur-
thermore, 64-bit access is required to fully utilize the available bandwidth
of shared memory. This is given in the multi-slice reconstruction mode.
However, 64-bit operation should be also enabled in CUDA using cudaDe-
viceSetSharedMemConfig command with cudaSharedMemBankSizeEightByte
argument. The constant memory also performs better if 64- or 128-bit wide
access is performed. A speed-up is achieved if all projection constants are
grouped together and stored as a single float4 vector. Even if only 3 com-
ponents of the vector are actually required (i.e. one quarter of bandwidth is
actually wasted), the performance is considerably better.

5.8. Summary

We have introduced a new cache-aware algorithm which is able to recon-
struct up to 4 slices in parallel. Several modifications are proposed to improve
performance on specific GPU architectures. The optimal configuration and
the corresponding performance are summarized in Table 13. The achieved
efficiency is further analyzed on Figure 6. For a single slice reconstruction



mode, the performance is above 90% of the theoretical maximum across all
considered platforms. Depending on the architecture, it corresponds to a
speed-up of up to 90% as compared to the original algorithm. Using the
multi-slice reconstruction and half-float data representation, it is possible to
quadruple performance on Fermi and the latest AMD and NVIDIA architec-
tures. Efficiency of about 80-90% is achieved if the optimized reconstruction
kernel is utilized. The efficiency of Kepler GPUs is restricted due to compar-
atively slow on-chip memory and low performance of SFU units which are
used to perform type mangling operations. Nevertheless, 2 to 3 times speed-
up over the standard single-slice algorithm is achieved due to the proposed
optimizations.

6. Alternative algorithm based on ALUs

While it is possible to reach a very high reconstruction speed by pro-
cessing multiple slices in parallel, this option is not available on all GPUs.
Furthermore, the ability to re-combine slices for parallel reconstruction may
be limited due to architecture of data processing pipeline or by the latency
requirements. According to specifications, the majority of GPUs are able to
perform over 32 floating-point operations during a single texture fetch, see
Table 10. Only 9 floating-point operations are required to perform a single
update of back projection algorithm [53]. Therefore, an alternative imple-
mentation using the algebraic units to perform interpolation may outperform
the texture-based kernel by 3-times if executed on a single slice. The chal-
lenge is to feed the data into the floating-point units at the required rate. The
L1 cache integrated in SM is small with low associativity and, consequently,
is susceptible of cache poisoning. As result, the loads from global memory
limit performance severely. In this section we present a back projection al-
gorithm based on ALU to perform interpolation and using shared-memory
as an explicit cache. First, we will explain the concept and present a base
version of the algorithm. Then, we build a simplified performance model
and analyze that limits the performance on each of the hardware platforms.
Finally, multiple adjustments are discussed to slightly shift balance between
memory operations and different types of computations and to address the
capabilities of a specific architecture better.



6.1. The Concept

The proposed approach is illustrated on Figure 10. To avoid the penalties
associated with global memory loads, shared memory is used to cache all bins
required for reconstruction by a block of threads. To reserve a large enough
buffer for the cache, it is necessary to find an upper bound of bins (b) required
to reconstruct a rectangular block of pixels (S) with dimensions n by m. It
is defined as

bp = max
(x,y)∈S

rp(x, y)− min
(x,y)∈S

rp(x, y)

where rp(x, y) is the incident offset in a projection row which is computed
as defined in equation 1. If (x0, y0) is the coordinates of maximum of rp and
(x1, y1) - of minimum, the equation can be reformulated as

bp = (x0 − x1) · cos(pα)− (y0 − y1) · sin(pα)

or
bp =

√
(x0 − x1)2 + (y0 − y1)2 · cos(α + β)

where β is some angle. Then, bp can be estimated as:

bp ≤
√

(n)2 + (m)2 · cos(α + β)

It is independent of processed projection and is minimal if the area S
is square. In this case the value of b does not exceed n ·

√
2. For practical

purposes we assume that 3
2
n bins are required per projection to reconstruct

a full pixel square with side n. To perform caching, it is necessary to find
the minimal required bin (hm) for each projection. Then, the reconstruction
is performed in two stages. First, the required bins are cached for a set of
projections. Afterwards, the reconstruction is performed using the data in
the cache. To perform caching, the threads of a block are split in several
groups. Each group is responsible to cache bins for a single projection. A
subset of a sinogram row consisting of 3

2
n bins is extracted starting at an offset

equal to the hm. Based on a thread index in a group, the offset in a sinogram
is computed and the corresponding bin is cached in a shared memory array.
If necessary, a few bins with a stride equal to a number of threads in a group
are cached by the same thread. The threads of a block are, then, re-assigned
to match the output pixels and process the contributions from the cached
projections in a loop. As usual, the threads determine a position where



the ray passing through the reconstructed pixel hits the detector row. The
corresponding bin in a sinogram is computed by each thread and an offset
from the hm value is found. Typically the offset is not integer and falls in
between of two cached values. Depending on the configured interpolation
mode either the offset is rounded to the nearest integer and a single value is
loaded from shared memory or both neighboring values are loaded and the
linear interpolation is performed to compute the impact of a projection.

Both steps depend on the hm to perform caching and to locate the re-
quired value in the cache. This operation is costly and would add significantly
to computation balance if executed by each thread and for each projection.
To reduce amount of required operations, the hm values are cached in the
shared memory during the first stage of algorithm and, then, re-used in the
second. Furthermore, the minimal bin is always accessed while reconstructing
one of the corners of the pixel square. The actual corner is only depending on
the projection angle and is the same across all squares of the reconstructed
slice. Therefore, a single value is required for each projection to compute
minimal bin. This value (cm) can be defined as the difference between the
position accessed to compute a top-left pixel of a square and the minimal
position accessed across this square. Then, it is computed as:

cm = n ·max(0, cos(αp),− sin(αp), cos(αp)− sin(αp))

Using cm, the minimal required bin (hm) is computed as: hm = floor(hb +
cm), where hb is the bin accessed by the first thread of a block. It is computed
based on a index of a thread block in the computational grid as described
in Table 7. The cm is computed during the initialization stage and is stored
along with other projection constants in the GPU constant memory.

Multiple auxiliary operations are required to perform reconstruction. The
sinogram values are fetched from the cache, interpolated, and summed up.
On top of that, the hm is computed for each projection, the selected parts
of sinogram are cached, and the corresponding positions in the projection
cache are determined for each pixel. These operations add an additional
load on GPU and significantly reduce the performance. While it is impossi-
ble to eliminate the auxiliary operations entirely, there are two major ways
to scale down their proportion. Either several slices are reconstructed in
parallel or a larger pixel area is assigned to a thread block for reconstruc-
tion. First option allows to reduce proportion of computations needed to
determine which data is cached for each projection and to find the required



offset in the shared memory array. Since the reconstruction is not bound by
a performance of the texture engine any more, there is no restriction on a
number of slices processed in parallel. It is possible to reconstruct 4 or more
slices together provided there is enough hardware resources to handle the
data. Proportionally less data has to be cached if a larger area is assigned
to a thread block. Consequently, the load on global and shared memories
is reduced. This is achieved either by increasing a number of threads in a
block or by assigning multiple output pixels to each thread. Since the con-
stants can be stored in the registers and re-used to process multiple pixels,
the load on constant memory is reduced in the last case as well T So, the
first option cuts down the amount of computations significantly. The sec-
ond method cuts down computations to lesser extent, but also reduces an
utilization of shared memory slightly. Both ways, however, increase the use
of hardware resources significantly. More shared memory and more regis-
ters are required. The optimal compromise between these options has to be
found for each targeted platform. Furthermore, there are multiple ways to
implement the described operations. Each variant will put more load on one
GPU subsystem or another. The additional shared-memory caches can be
utilized to shift the balance between computations and memory operations.
In the next subsection we present a base implementation and will target the
specific architectures across the rest of the section.

6.2. Base Implementation

Processing only a single pixel per thread is sub-optimal across all targeted
platforms. The optimal load is between 4 and 16 pixels depending on the
available hardware resources. Since square areas are most efficient to cache,
we target areas of either 32-by-32 or 64-by-64 pixels per a thread block. While
intermediate sizes can be used as well, for power of two sizes it is easy to
design thread mappings suitable for both caching and accumulation stages of
the reconstruction process. For sake of simplicity, in Algorithm 6 we present
a simple version processing 4 pixels per a thread. A block of 256 threads is
used to reconstruct a square of 32-by-32 pixels. The maximum number of
bins accessed per projection, then, is equal to 32 ·

√
2 or 46. If the linear

interpolation is used, up to 47 elements in a sinogram array are actually
accessed for each projection. Therefore, 16 threads cache all required values
in 3 iterations. To avoid conditionals all 48 values are always cached. This
ratio keeps if 64-by-64 area is reconstructed. The 96 values has to be cached.
The number of projections processed in parallel is limited by the available



shared memory and the size of a single projection row in the cache. A group
of 16 projections may be cached at once if only a single slice is reconstructed.
For 4-slice mode or if a 64-by-64 area is reconstructed, only 8 projections
are typically processed in parallel. Reducing this number further may have
negative impact on the performance as many threads would need to wait at
the synchronization point reducing the effective occupancy.

As was already explained, the hm is computed during the caching stage
and also stored in shared memory. Instead of repeated computation, the
value is loaded from shared memory during the reconstruction stage. To
find the required offset in the cache, a difference between the position in
a sinogram row (h) and hm is computed. The equation for h includes the
projection-corrected position of the rotational axis (ca) which is constant for
all pixels. It can be integrated into the hm already during the caching step
of the algorithm. So the value of ca−hm is stored in shared memory instead
of hm. Then, only the pixel-dependent part of the projection equation is
computed inside of the main loop.

Since no interpolation is required while the data is read from global mem-
ory, it is possible to access the sinograms directly rather than using texture
fetches. The loads are always coalesced and thread blocks read each value
only once. However, NVIDIA relays on the same LD units to perform the
shared and global memory operations. I.e. either a shared memory or a
global memory instruction will be executed by SM at each clock. On other
hand, texture loads are performed using the specialized units on all architec-
tures. Therefore, it is possible to load data from global and shared memory
simultaneously if global memory is accessed using the texture engine. It
makes the texture engine a preferred option to get the data in the shared
memory cache. To avoid unnecessary interpolations, the texture engine is
configured to use nearest neighbor interpolation.

6.3. Optimizing the thread mapping to avoid shared memory bank conflicts

Like for the texture-based reconstruction kernel, the thread-to-pixel map-
ping is important to achieve a good performance. The main goal is to reduce
shared memory transactions and avoid shared memory bank conflicts during
the both stages of reconstruction. On all architectures, the warps need to
avoid accessing multiple rows of the same shared memory bank in a single
instruction. While the warp consists of 64 threads on the AMD platform,
maximum 32 shared memory banks are supported on the reviewed GPUs.
To prevent bank conflicts, it is only necessary to avoid accessing the same



bank across a group of 32 threads [47]. Therefore, there is no need to tackle
the larger warp size on AMD while discussing the shared memory access.
Furthermore, there are several architecture specific restrictions. The Fermi
and AMD devices are not capable to handle 128-bit data efficiently [34, 47].
Using 64-bit wide operations is extremely important on the Kepler archi-
tecture to utilize the full performance of shared memory. Only half of the
bandwidth is available if 32-bit access is performed. While not as significant
as on the Kepler architecture, 64-bit loads are about 20% faster on AMD
Cypress and Tahiti [47].

No changes are required to benefit from the 64-bit shared memory in the
multi-slice reconstruction modes. A 64-bit access can be easily facilitated
in the caching step of the algorithm also if a single-slice reconstruction is
performed. Each thread is made responsible to cache 2 bins per iteration.
First, 2 texture fetches are performed to extract values of the neighboring
bins. Then, both values are assembled in a 64-bit float2 vector and are
written into the shared memory using a single operation, see Algorithm 7.
This approach, however, reduces the locality of texture fetches. Since hm may
have an odd value, switching to float2 textures is not an option. However the
load on the texture engine is quite low and in contrast to shared memory has
little impact on overall reconstruction speed. This optimization is relevant
on NVIDIA Kepler and both older AMD GPUs.

Only the half of the available shared memory banks are utilized on the
NVIDIA Fermi and all AMD GPUs if 128-bit data is accessed. To circumvent
the problem, it is possible to split the float4 vectors in two parts, store them
in the two buffers in shared memory separately, and re-combine back before
performing interpolation, see Algorithm 8.

In the first stage of algorithm, the number of threads assigned to cache
each projection is adjusted to optimize access to the shared memory. If a large
64-by-64 area is reconstructed, a full warp of 32 threads can be assigned for
each projection row avoiding any possible bank conflicts. Unfortunately, it is
not completely optimal on the Kepler architecture as, then, it is impossible
to re-combine two bins into a single 64-bit wide write as explained above. It
is also not possible to assign 32 threads per row for a smaller 32-by-32 area
because only 48 bins has to be cached per projection in this case. And it is a
bad idea to keep the half of threads idling. Therefore, several projection rows
are processed by each warp in the described cases. This potentially may cause
bank conflicts. If only a single slice is reconstructed, however, the banks are
shifted from one projection row to another as illustrated on Figure 11. The



caching is performed without bank conflicts if either 16 threads are assigned
per projection row on the platforms with 32-bit shared memory or 8/16
threads are used on the Kepler devices. Only 8 threads are used to allow bin
re-combination if a small area is reconstructed. 16 threads per projection are
optimal on all platforms if multiple slices are reconstructed. The 64-bit banks
storing float2 -sinogram are shifted across projection rows exactly the same
way as 32-bit banks do if a simple float-sinogram is reconstructed. And on
platforms with 32-bit shared memory it is enough to prevent bank conflicts
within a group of 16 threads while dealing with 64-/128-bit data. The optimal
settings for each reconstruction mode are summarized in Table 14.

According to the documentation it does not matter how the threads of a
half warp are accessing shared memory. In practice, however, we found that
on recent NVIDIA devices the performance of 64- and 128-bit loads is slightly
improved if only 1-2 different memory locations are accessed by groups of 4
consecutive threads. The locality of shared memory loads is improved if each
half-warp is mapped to a square consisting of 4-by-4 pixels and the threads
are arranged along Z-order curve similarly to the texture fetches. All 256
threads of a block are mapped to 16 such squares. For the reasons explained
in section 5.6, the squares are arranged linearly along x-axis. Two rows of 4x4
squares are processed in parallel if a small 32-by-32 area is reconstructed. A
single row is covered for the bigger area or if only 128 threads are assigned per
a block. The remaining rows are processed over 4-16 iterations. The threads
accumulate the sums for each pixel in a register-bound array and dump it
to global memory once the processing of all projections is completed. The
complete mapping scheme is illustrated on Figure 12. The performance of
NVIDIA Titan X is increased by 3% if the described mapping is utilized.

6.4. Advanced Caching Mode

For linear interpolation two neighboring bins are always loaded, but it is
impossible to perform 64-bit load due to the alignment requirements. Con-
sequently, only a half of the available bandwidth is used on the Kepler ar-
chitecture in the single-slice processing mode. To allow 64-bit access, both
values required to perform linear interpolation are stored as float2 vector in
the corresponding bin of the cache. The size of cache is doubled, but also
the achieved bandwidth is increased by factor of two on the Kepler platform
and is considerably improved on the AMD devices which are optimized for
64-bit loads. The required amount of shared memory is still adequately low
and does not limit occupancy if the single-slice reconstruction is performed.



Furthermore, one floating-point operation is eliminated in the interpolation
step of algorithm if the second component of cached vector actually stores
the difference between the values of consecutive bins in a sinogram as shown
on Figure 13.

The caching procedure is modified as shown in Algorithm 9. To reduce
required inter-thread communication, each thread caches several consecutive
bins. The communication is, then, only required to compute the second part
of the last bin which is assigned to a thread. The shuffle instruction is used
on Kepler and the newer NVIDIA architectures. A read from shared memory
is performed on the NVIDIA Fermi and all AMD GPUs after the fence-style
synchronization. In this case the shared memory cache is also padded by one
extra column to allow an unconditional read by the last thread in a group
assigned to a projection row.

In case of a 32-by-32 pixel area, 16 threads per projection row are used on
all platforms independent of the width of a shared memory bank. The banks
are shifted between projection rows on the 64-bit platforms as explained in
section 6.3. And for 32-bit architectures it is enough to avoid bank conflicts
within a half-warp only. Furthermore, there is also no bank conflicts between
the threads of a half-warp as the stride is not a multiple of 4, see illustration
in Figure 14. A full warp is used per row if a thread block is assigned to
process larger 64-by-64 pixel area. The same number of iterations is, then,
required to process the complete projection row and, consequently, shared
memory is accessed with the same stride without bank conflicts.

6.5. Modeling

The proposed method is relatively complex and utilizes multiple GPU
subsystems. There are many ways to tune the proposed algorithm to address
the capabilities of a targeted architecture better. It is important to under-
stand the limiting factors in each case. Here, we try to build a simplified
performance model. First, we identify several distinct operations required to
perform back projection:

1. The projection constants are loaded from memory. And the minimal
required bin is computed to decide which data has to be cached.

2. The sinogram subsets are fetched from the texture and cached in shared
memory.

3. For each reconstructed pixel, the corresponding position in a sinogram
is determined.



4. The offset in the shared memory array is computed.

5. Depending on the requested interpolation type, one or two values are
fetched and the contribution of a projection is added to the accumula-
tor.

These operations rely on several hardware components:

• Constant memory is used to retrieve projection constants.

• Texture Engine is used to retrieve the sinogram values.

• Shared memory is used while caching the data and retrieving the
cached values to perform interpolation.

• ALUs are used for general-purpose computations, particularly to per-
form projection and interpolation.

• SFUs are used on Kepler, Maxwell, and Pascal architectures to perform
rounding operations, to convert data between floating point and integer
representation, and to perform bit-shifts. These instructions are used
to compute offsets in the cache and to perform interpolations. While
the bit-shifts are not used directly in pseudo-code, they are implicitly
utilized to resolve addresses in the constant and shared memory arrays.

Each of these components may limit the performance if its resource is
exceeded. Furthermore, there is also a limit on a number of instructions which
SM is able to schedule per a clock cycle. Particularly, the warp scheduler on
Fermi is limited to a single instruction per clock. If a memory instruction is
launched, the half of ALUs are kept idle. To estimate the performance we
assess the number of required operations according to the presented pseudo-
code. We assume that the performance is either capped by the slowest of
the components or by a total number of instructions. It is a very rough
estimate. The developed kernels are resource intensive and are executed at
a significantly reduced occupancy. It is difficult to predict how the compiler
will generate the code to manage the available resources. Furthermore, some
variables are moved to the slower local memory. The local memory is backed
by L1 cache which shares the hardware with shared memory on the Fermi
and Kepler based GPUs. Consequently, the operations with such variables
are not only increasing latency, but also may penalize the shared memory
performance. Nevertheless, the obtained estimates allow us to choose the
required optimization strategy for each architecture.



Instructions required to perform a single update on a pixel value are
summarized bellow for the reconstruction using the linear interpolation.
Rounding/type-conversions (TC) and bit-shift (BS) operations are counted
separately because they are scheduled differently on Maxwell/Pascal and Ke-
pler GPUs. For each operation the normalization coefficient, i.e. the number
of updates performed per the specified number of instructions, is indicated.
Fused-Multiply-Add (FMA) is counted as a single instruction.

1. Computing and caching of hm (per nt ∗ nq ∗ nv updates)

• Constant Memory (128-bit): st

• Shared Memory (32-bit): st (because a full warp is executed
anyway)

• FP: 4st (to compute hb and hSm)

• TC: st (rounding)

• BS: 2st (resolving addresses in constant and shared-memory ar-
rays)

2. Caching (per nt ∗ nq ∗ nv updates)

• Texture Fetches: 3
2

√
nt ∗ nq

• Shared Memory (type-dependent, but always 64-bit in Ad-
vanced Caching Mode): 3

2

√
nt ∗ nq

• FP: 4st (3 if Advanced Caching Mode is not used)

• TC: st (integer to float conversion of projection number to per-
form texture fetch)

• BS: 2st (resolving addresses in the shared-memory array)

3. Setting inner-projection loop and evaluating required position in sino-
gram (per nq ∗ nv updates):

• Constant Memory (64-bit): 1 (only cosine and sine of the angle
are required here)

• Shared Memory (32-bit): 0.25− 1 (offsets for 4 projections can
be loaded at once using a single 128-bit load if the loop is unrolled)

• TC: 2− 3 (computing h, updating loop index unless unrolled)

• BS: 1 − 3 (resolving addresses in the constant array and also in
both shared memory caches unless the loop is fully unrolled)



4. Computing an offset in the cache and the coefficient for linear interpo-
lation (per nv):

• FP: 2 (update to the next offset; computation of interpolation
coefficient unless nearest neighbor mode is selected)

• TC: 2 (rounding and float-to-integer type conversion; only a sin-
gle operation is required if nearest neighbor interpolation is per-
formed)

• BS: 1 (resolving the address in the shared memory array)

5. Linear Interpolation (for each update):

• Shared Memory (type dependent): 1 (2 if Advanced Caching
Mode is not used)

• FP: 2 (interpolation and update; 3 operations if Advanced
Caching Mode is not used and only 1 if nearest neighbor inter-
polation is performed )

Further, a single-slice reconstruction (nv = 1) using advanced caching
mode is evaluated. Blocks of 256 threads (nt = 256) are assigned to process
a 32-by-32 pixel square (nq = 4). For sake of simplicity we assume that
16 threads are used to cache a single projection row and that the inner
projection loop is fully unrolled. We skip the texture fetches as load is very
low and certainly is not a limiting factor here. Then, the following number
of operations is estimated per a single update:

• Constant Memory: 2.3 bytes (0.3 instructions)

• Shared Memory: 8.7 bytes (1.1 instructions)

• FP: 4.6 (counting FMA as a single operation)

• TC: 2.0

• BS: 1.3

• Instructions: 8.2

To verify these estimates, the prototype implementation was executed
under CUDA profiler. The number of estimated and measured operations is
compared in Table 15. There is a difference, but the error is within 10%.



Table 16 evaluates the maximum performance according to each execu-
tion unit. The throughput is taken from Table 10 and the load is computed
according to the list above using the following assumptions which are ex-
plained in the section 3.7. NVIDIA Maxwell and Pascal are not restricted to
the SFU to perform bit-shifts, but are able to use also ALU units. On this
devices we do not include the integer multiplications in the SFU balance. On
NVIDIA Kepler we do. SFUs are either not available or not used on AMD
GCN and NVIDIA Fermi. So, all types of operations are counted together
in the ALU balance.

As can be seen, the performance bottleneck is architecture dependent.
The AMD VLIW and NVIDIA Kepler GPUs are bound by ability to perform
rounding operations and to convert variables between integer and floatint-
point representation. While not limiting performance in the modeled config-
uration, this still sets a quite low threshold on Maxwell and Pascal GPUs.
However, the main limiting factor on these architectures is the shared mem-
ory bandwidth. The Fermi GPU is only capable to dispatch a single in-
struction per warp and, consequently, bound by the instruction throughput.
Finally, AMD GCN based devices are restricted by the performance of alge-
braic units.

6.6. Rounding Using Floating-Point Arithmetic

The Kepler performance is severely limited because due to rounding and
type conversion operations. The reason is the slow performance of SFU units
on the Kepler platform. Total 3 SFU operations are required to compute
offset in shared memory and to perform linear interpolation.

float hf = floor(h);
int hi = (int)hf ;

float d = dS [hi];

Each of the listed instructions uses SFU. The first instruction performs
rounding and the second converts floating-point number to integer. The last
operation involves a bit-shift to resolve the address of an array element. The
array index is multiplied by the size of a data type, but the bit shift is actually
performed in place of multiplication because the data size is always power of
two. Instead, it is possible to perform multiplication using the floating point
numbers and operate with pointers directly, like:

float hf = floor(h);
int hi = (int)(4.f ∗ hf );

float d = ∗(float∗)((void∗)dS + hi);



Then, one of the 3 SFU instructions is replaced with 2 floating-point
operations. However, it is possible to eliminate the SFU instructions en-
tirely. Since the offsets are always small positive numbers, rounding and type-
conversion operations can be implemented using the floating-point arithmetic
only. IEEE754 specification defines the format of a single-precision floating
point number [54]. It is illustrated on Figure 15. For positive numbers, the
representation is defined as:

f = 2e−127 · (1 +
∑

fi · 2i−23) (2)

Consequently all fractional components are eliminated if 223 is added to a
number.

f + 223 = 223 · (1 +
∑

fi · 2i−23) (3)

The rounded number is obtained if e23 is subtracted back afterwards. To
compute floor() it is necessary to subtract 0.5 before these operations. I.e.
the following implementation is suggested:
float e23 = exp2(23.f);
float h′ = h− 0.499999f ;
float htmp = h′ + e23;
float hf = htmp − e23;

The proposed method replaces a single SFU-based rounding instruction
with 3 floating-point operations. The e23 constant is computed only once
in the beginning of a kernel and does not add much to the computation
balance. It is further possible to make a float-to-integer conversion using a
simple integer subtraction which is performed by ALU. The small integer
numbers are fully encoded by the fraction portion of an IEEE 754 number.
There are still some significant bits representing exponent, but they can be
easily eliminated as illustrated on Figure 15.
int hi = __float_as_int(htmp) - 0x4B000001;

The float as int is a simple cast (re-interpretation) of a floating point
number as an integer. Using the pointer arithmetic notation, it is equivalent
to ∗(int∗)&htmp. Still there is an index computation left. It is often reason-
able to keep some load on SFUs as well. If indexing is left unchanged, the
d[ float as int(htmp − 0x4B000001)] is replaced with a single iSCADD op-
eration combining multiplication and integer subtraction. It is executed on
SFU in a single clock cycle. Consequently, 2 SFU instructions are replaced
with 3 floating point operations and a single SFU instruction is left. The
other option is to eliminate SFU instructions entirely. It is possible with



htmp = 4 * htmp - (4 - 1) * e23;

void *addr = (void*)dS + __float_as_int(htmp);

float d = *( float *)( addr);

In this case 3 SFU instructions are replaced with 5 floating-point operations.
The method to use depends on the expected operation balance. It can be
estimated using the performance model which was proposed in section 6.5.
Either way the result is exact and there is no penalty to quality.

To perform nearest-neighbor interpolation, 2 SFU instructions are re-
quired on Kepler. One instruction can be easily replaced with floating-point
operation by performing multiplication before type conversion as explained
above. Otherwise, the SFU instructions are completely replaced with 3
floating-point operations.

The performance along with a number of instructions issued per update is
shown in Table 17 for NVIDIA GTX Titan. The speed-up of 20% is achieved
if rounding is implemented using floating point instructions, but index com-
putation is left on SFU. The complete elimination of SFU instructions puts
unnecessary load on ALUs and keeps SFU units idle. This method has a
little impact on the VLIW architecture. While the performance is limited by
the throughput of integer instructions, the difference between performance
of floating-point and special units is not as high as on Kepler. Consequently,
the performance is limited approximately at the same level.

6.7. Half-float cache

Like in the texture-based reconstruction algorithm, the half-float repre-
sentation may be used to speed-up reconstruction. While the texture engine
is not a performance-limiting factor here, the bottleneck in shared memory is
lifted on the Maxwell and Pascal architectures if half-float values are cached
in shared memory. The values are converted to a single-precision format just
before computing interpolation. Since the texture units are always used in
the nearest neighbor mode, it possible to use the half-float data representa-
tion also to speed-up reconstruction performing linear interpolations. About
10% performance increase is measured on Pascal and Maxwell if 4 slices are
reconstructed in parallel and the linear interpolation is performed. High
load on SFU units to convert between half and floating-point representation
prevents larger speed-ups. It is also the reason why no performance improve-
ments are reported on other platforms. On professional series of Tesla cards
with Pascal architecture it could be possible to achieve higher performance
by keeping the computations in half-precision all way through the end. The



results, however, are expected to suffer from additional performance degra-
dation. In any case this is not feasible on Titan X because of significantly
lower throughput of high-float arithmetic.

6.8. Additional Caches

The Fermi performance is limited by the throughput of ALU units and
also by a number of instructions it is able to dispatch per clock cycle. Using
the advanced caching mode, the interpolation footprint is reduced by a single
instruction. Advanced caching is used across multiple platforms in the single-
slice reconstruction mode. On Fermi, however, it also improves performance
if multi slices are reconstructed in parallel. The vectors fetched from the
texture engine are split into the components and are cached using 2 or 4
independent caches. Furthermore, there is an additional option to slightly
reduce the number of operations. Two FMA instructions are required to find
the required offset in the cache.

h = hSm[p] + f ′g.x ∗ cCc [p]− f ′g.y ∗ cCs [p]

This computation is performed once per so many pixels the thread is respon-
sible for. If 16 pixels are assigned to each thread, the impact is negligible in
the overall computational balance. Fermi is, however, limited by amount of
available registers and unlike newer architectures is restricted to process only
4 pixels per a thread. Therefore, it is relevant to reduce a number of instruc-
tions required to compute h. When hSm value is cached, only a single thread
in every 16 is actually used to perform the caching. Instead the cached value
may include the x component as well and utilize all threads with a minimal
extra load. I.e. the following value is cached in shared memory instead of
hSm:

hSx [mp][mt.x] = cCa [p] + fg.x ∗ cCc [p]− hm
Then, 32 values are cached per projection row, but only one FMA is used to
compute the offset:

h = hSx [p][m′t.x]− f ′g.y ∗ cCs [p]

The amount of required shared memory is significantly increased, but there is
no additional memory traffic. A warp is either loading the same value which is
broadcasted from a single shared memory bank or up to 32 values are loaded
and all banks are utilized. Furthermore, the cosine of a projection angle is



not loaded any more from the constant memory. Extra instructions, however,
are dispatched unless special care is taken. As was mentioned in section 6.5,
the 64- or 128-bit loads are performed to load hSm if the projection loop
is unrolled. This is possible because the values for consecutive projections
are stored next to each other. Technically it is possible to organize the
new cache to keep such arrangement, but there is a better option which
is independent of loop-unrolling. The threads of the block are assigned to
process a 16-by-16 pixel square at each iteration instead of the mapping
proposed in Figure 12. In section 5.6 the linear mapping scheme is reasoned
by ability to maintain only a single index because, then, each thread needs to
increment an y-coordinate only. This is given using the new caching scheme
as the x component is already included in the value loaded from the cache.
Each thread processes 4 pixels with coordinates (x, y), (x+16, y), (x, y+16),
and (x+ 16, y+ 16). It loads hSx [pi][x] and hSx [pi][x+ 16] using a single 64-bit
instruction and only need to increment the y-coordinate. The utilization of
the shared memory bandwidth is increased as each thread needs to load 64
bits per projection instead of 32. But the total memory bandwidth is still
exactly the same as in the base implementation due to reduced requests to
constant memory. About 5% speed-up is achieved on the NVIDIA Fermi and
AMD Tahiti architectures.

Few other values can be cached to slightly shift the balance of operations.
In some cases, it is beneficial to cache also trigonometric constants in shared
memory. This is slightly improves the performance across NVIDIA archi-
tectures. The hm value is normally computed multiple times by all threads
responsible to cache a specific projection row. The extra load is not very
high, but can be avoided for a price of several additional registers required
to introduce a third stage in the reconstruction process. At first, threads of
a block are assigned to compute hm values for 256 projections and cache it
in shared memory. Then, the values are just loaded at each iteration. It was
found useful on the AMD VLIW architecture. Vice-versa the caching of hm
can be disabled altogether on the systems with fast ALUs, but slow shared
memory. The suggested cache settings are summarized in Table 18.

6.9. Managing Occupancy

The number of pixels processed per block and per thread is one of the main
parameters affecting the performance. The optimal configuration depends on
the available GPU resources, but also on the size of the reconstructed image.
The number of executed blocks could be insufficient to load GPU evenly



if large pixel blocks are used in conjunction with a small image. However,
the texture-based approach is expected to perform better for small images
in any case. To summarize the performance and optimal configuration we
assume that the sufficiently large image is reconstructed and focus on the
hardware capabilities only. Depending on the available GPU resources 4, 8,
or 16 pixels are assigned per thread. In the last case each thread block is
responsible to reconstruct an area of 64x64 pixels. Otherwise, only 32x32
pixels are processed. The block of 128 threads is used to allow processing of
8 pixels per thread.

If a number of concurrently processed slices is given, there are still mul-
tiple factors affecting the performance. The optimal implementation of the
proposed algorithm should ensure that:

• The full occupancy is achieved to hide latencies efficiently.

• A large reconstruction area is assigned to each thread block to reduce
amount of caching operations per reconstructed pixel.

• As many pixels as possible are assigned to each GPU thread. It allows
to reduce a proportion of the auxiliary operations required to compute
offsets in the cache and also ensures that a large amount of indepen-
dent instructions is in execution flow as required by the architectures
relaying on the instruction level parallelism (ILP).

• The number of threads assigned to cache each projection row is in ac-
cordance with the requirements specified in Table 14. Then, no shared
memory bank conflicts occur and the shared memory writes are exe-
cuted optimally.

• The number of projections cached at each iteration step is enough to
utilize all threads in the block. Otherwise, the threads idling at the
synchronization point reduce the efficiently achieved occupation.

• The projection loop is completely unrolled to provide additional ILP
parallelism and ensure that multiple 32-bit memory operations can be
combined into a single 64-/128-bit instruction.

• The generated code is able to issue multiple load operations in a stream-
ing fashion as explained in section 3.6. It allows to reduce penalty in-
flicted by the memory access latencies if other mechanism fail to hide
them entirely.



• All appropriate optimizations discussed through this section are imple-
mented.

Due to hardware limitations it is impossible to achieve all these goals
simultaneously. The number of required registers is steeply increased with a
number of pixels assigned per thread and restricts the achieved occupancy.
Using the multi-slice reconstruction mode, either a high occupancy or a high
number of pixels per thread is possible to achieve. The amount of available
shared memory restricts how many projections could be cached at the de-
sired occupancy level. If this restriction is low, the high effective occupancy
is still possible to achieve in the caching stage if more threads are used to
cache each projection or smaller 128-thread blocks are in use. The first op-
tion is only available if 16 pixels are reconstructed per thread. Consequently,
a high number of registers is required in both cases. Furthermore, the num-
ber of threads assigned per projection is in turn restricted if shared memory
is optimized for 64-bit writes. Most of the proposed optimizations increase
the usage of registers or/and shared memory. The use of additional caches
could have a negative general impact if the increased shared memory foot-
print results in a lower number of cached projections or reduces the achieved
occupancy. The streaming loads cause a significant increase of consumed reg-
isters and definitively reduce the occupancy. Hints to compiler reducing the
unrolling of inner projection loop are used to prevent this. Furthermore, the
desired occupancy can be targeted on NVIDIA platform. Forcing the higher
occupancy may result in additional computational load may and cause the
compiler to back part of the local variables with slower local memory instead
of registers. Vice-versa under low occupancy, the compiler may be able to
increase ILP parallelism and perform stream-loading more efficiently.

The importance of the described aspects differs between architectures and
an optimal compromise has to be found for each targeted platform. We found
out that targeting 50% occupancy is optimal across majority of architectures.
On the platforms with a larger register bank, the occupancy above 50% is
achieved by default. If 50% is targeted, more registers are available for data
streaming which has often a positive impact on the performance. Vice-versa,
on the systems with a small register bank the default occupancy is typically
low and restricting the amount of used registers to ensure 50% occupancy
results in a faster code. We also have found that it is important to keep at
least 50% of threads busy in the caching stage. Above this threshold the
under-utilization has an impact, but relatively insignificant. Therefore, to



cope with shortage of shared memory, the number of cached projections is
decreased in steps of 4.

The Maxwell and Pascal GPUs have a large amount of both shared mem-
ory and registers, but are bound by the shared memory bandwidth. An area
of 64-by-64 pixels are processed by each thread block on these platforms in
order to reduce amount of shared memory writes. In the linear interpolation
mode the amount of shared memory operations is well balanced with ALU
throughput. The streaming of memory reads is not required if the shared
memory loads are interleaved with ALU- and SFU-bound interpolation in-
structions. Thus, the 100% occupancy is targeted and a speed-up of 15% is
measured. This is not the case in the nearest neighbor interpolation mode.
The shared memory bandwidth is the bottleneck in this case and the perfor-
mance is improved if multiple shared memory loads are streamed together.
Consequently, significantly more registers are required. By default the CUDA
compiler does not utilize the streaming capabilities fully, but runs at 62% oc-
cupancy. Requesting occupancy to 50% allows to stream more loads together
and improves performance by 7%. The impact of occupancy on the perfor-
mance for both linear and nearest-neighbor interpolation modes are reviewed
Table 19.

The Kepler GPUs has the same amount of registers as Maxwell and Pas-
cal. However, a more aggressive unrolling is required and is performed by
the CUDA compiler to ensure the wide memory accesses and to enable the
longer flow of independent instructions. The ILP parallelism is required to
allow 4 warp scheduler to utilize all 6 ALU blocks integrated in the Kepler
SM. Consequently, an increased number of registers is used to execute the
same code. For instance, the reconstruction based on the linear interpolation
as discussed in the previous paragraph would use 55 registers if compiled for
the Kepler architecture (compute capability 3.5) instead of only 40 regis-
ters which are required if Pascal architecture is targeted. The performance
at 100% occupancy is sub-optimal if linear interpolation is performed. On
other hand, the 64 registers available at 50% occupancy are not enough to
enable efficient streaming of the shared memory loads. Therefore, a small
pixel area of 32-by-32 pixels is reconstructed per block and the block is re-
duced to 128 threads only. The last point is important to keep a high level of
ILP and also to achieve a full thread utilization in the caching stage as the
number of cached projections is limited due to low amount of available shared
memory. Using nearest neighbor interpolation, there is enough registers to
organize stream-loading at 50% occupancy also for the larger pixel area. The



Fermi architecture includes only a half of the Kepler registers and is bound
to 32-by-32 pixel area in all interpolation modes. While the amount of the
shared memory is the same as on Kepler, fewer blocks are required to achieve
full occupancy here. Consequently, it is possible to cache more projections
at 50% occupancy. On GT200 the amount of registers is even lower and
it is not suitable to implement the proposed scheme with sufficiently high
performance.

While there is no option to instruct compiler on the desired occupancy
on the AMD GCN devices, the used caches are aimed to ensure that at least
50% occupancy can be achieved. The VLIW architecture needs to issue 4-5
independent instructions at each clock. Therefore, it is important to ensure
a very large ILP parallelism even in price of significantly reduced occupancy.
The larger area is assigned to a thread block for a single-slice reconstruction
and a smaller thread block is used to process 8 pixels per thread in all other
cases. The algorithm is running at about 35% of the maximum occupancy.

Table 20 summarizes the proposed configuration and gives the measured
performance. If only a single slice is available for reconstruction, the new
algorithm outperforms the texture-based version across all considered archi-
tectures. The maximum speed is better on Fermi and on all AMD archi-
tectures if the linear interpolation is performed. Using the nearest-neighbor
interpolation the performance is improved on Kepler GPUs and also across
all target architectures in the case if the quality is not compromised by a
half-float data representation.

The GPU-specific tuning has a major positive effect on the performance.
However, new architectures are announced yearly. A throughout study would
be required to adjust parameters accordingly. Furthermore, the generated
code varies significantly for the devices of different compute capabilities even
within the same architecture family. While we had not studied it in detail,
there are also differences depending on the CUDA version. To avoid manual
work, the actual configuration can be parametrized and a quick search in
the parameters space executed to find the optimal settings. The parameters
may include numeric options like the targeted occupancy, number of cached
projections, unrolling factor, etc. But also switching on and off specific opti-
mizations and caches is feasible. Automated approach would not deliver the
optimal performance if the new functional blocks are introduced like Tensor
Units on a recently announced NVIDIA Volta architecture. However, it can
address the shifts in the operation balance.



6.10. CPU and Xeon Phi
While we are not aiming on the CPU-based architectures, the OpenCL

code developed for AMD platform is easy to modify to run also on general-
purpose processors and we have evaluated CPU performance for sake of com-
pleteness. The texture-engine is not provided by the general-purpose proces-
sors. While the recent versions of OpenCL frameworks emulate the missing
functionality, better performance is achieved by targeting the algebraic units
of CPU directly. We adapted both standard and the ALU-based algorithms
to load data directly from system memory instead of fetching it using texture
engine. The standard algorithm is additionally modified to perform linear
interpolation explicitly. The main difference between two methods is that the
ALU algorithm caches data in shared memory while the adapted standard
method loads data directly from system memory relaying on CPU caches.
In fact, however, there is no a special hardware component backing shared
memory. The appropriate blocking is enough to utilize CPU caches and the
intermediate caching step is not necessarily required. On other hand, the
amount of required computations is reduced if the second term for linear in-
terpolation and a few other intermediate values are pre-computed and cached
in shared memory as proposed in sections 6.4 and 6.8. In either case, the
performance is improved if multiple slices are reconstructed in parallel and
a larger pixel area is assigned to a thread block. Actually, on newer systems
supporting 256-bit AVX instructions it makes sense to scale up processing to
at least 8 slices in parallel. Allocating a larger amount of pixels per block is
relevant to use the cache efficiently. The optimal number is determined by
the size of L2 cache available per CPU core.

There are two major OpenCL frameworks supporting general-purpose
processors. AMD and Intel deliver their own SDKs, but the processors by
both vendors are supported in either case. The AMD framework is not ca-
pable to run ALU algorithm efficiently without further adaption. A faster
reconstruction is possible if the simpler standard algorithm is used instead.
Still, it is significantly slower compared to the performance delivered by the
Intel SDK running the same OpenCL code on the same hardware. The speed
is even faster if Intel is running the ALU variant with advanced caching mode
and hx caching enabled. The best performance is measured in a 4-slice re-
construction mode and with 64x64 regions assigned per a thread block. To
evaluate performance we compared the reconstruction speed against CPU-
version of PyHST [12]. It implements multi-thread and cache-aware recon-
struction, but does not perform implicit vectorization. Each thread processes



a subset of all slices. The compound sinograms for simultaneous reconstruc-
tion of several slices are not supported. The performance is summarized in
Table 21. PyHST outperforms the OpenCL prototype if it is executed in the
single-slice mode, but it is slower if multi-slices are reconstructed at once.
The performance of 33 GU/s is measured if a newer server with dual Xeon
E5-2680 v.3 is used. Even then the achieved reconstruction speed is inferior
to the performance delivered by the slowest of considered GPUs.

There are several architectural differences on a CPU platform which are
not considered in our implementation which is optimized for a range of GPU
architectures. On GPUs, the fastest available memory is used to cache the
data. In case of CPUs, the proposed algorithm is able to utilize L2 cache
efficiently, but does not consider the faster L1 cache. The size of L1 cache
is significantly smaller compared to the amount of shared memory on GPUs
and is limited to only a few kilobytes per CPU core. It is enough to cache
the data required to process a single projection. Unfortunately, the context
switches are significantly more expensive on CPU platform. When a thread
block is scheduled to SM, the SM permanently assigns registers to all threads
of the block and can switch executed threads without significant penalty. It
is not the case for general-purpose processors. The used registers and the
stack pointer have to be saved and restored at each context switch [55]. To
avoid an associated performance penalty, the threads on CPU platform are
usually execute a large amount instructions before switching. Particularly,
for the proposed back-projection algorithm this means that a thread will
process multiple projections before giving a way to other threads of a block.
Consequently, the data cached from the first projection of a block is already
evicted from the L1 cache when the next thread is started. While it can
be prevented by synchronizing block threads at each projection iteration,
the performance will be penalized just other way due to expensive context
switches. The penalty due to context switches is actually playing a significant
role in the performance difference between AMD and Intel SDKs. Using Intel
SDK, the performance of the standard algorithm is slightly improved if the
synchronization is performed before moving to a next projection. On AMD,
this penalizes performance drastically as it is shown in Table 21.

The latest versions of Intel OpenCL SDK does not include support of
Xeon Phi processors any more. For this reason we had to resort to much
older version from 2014. This version perform significantly worse on general-
purpose CPUs. The delivered performance is on pair with SDK from AMD.
Consequently, the measured performance is barely above the speed of a pair



of old Xeon processors. The higher performance probably can be achieved if
a way to consider L1 cache is found. However, it is much simpler to target
general-purpose architectures using a simple C code. No context switches
are required if CPU cores are made responsible for different subsets of slices.
And both L1 and L2 caches can be targeted with the appropriate blocking
directly.

7. Hybrid Approaches

We have proposed two algorithms to perform back-projection. One relays
on the texture engine and is bound to its performance. The second is using
shared memory and ALUs with only a small load on the texture engine. In
this section we propose two methods to balance the load across all hardware
components.

7.1. Combined Approach for Pascal Architecture

On Maxwell and Pascal architectures shared memory and SFU perfor-
mance are the main limiting factor for the ALU-based algorithm. Both of
these resources are very lightly utilized by the texture-based kernel. There-
fore, it is possible to run the texture-based kernel for one part of the blocks
and ALU-based kernel for another. NVIDIA allows to detect which SM exe-
cutes the block. Consequently, it is possible to ensure that the desired ratio
between texture- and ALU-based kernels is achieved.

An array is statically defined in the global memory space. The first
thread of a block is resolving the SM number using get smid() instruction
and increments the corresponding cell of the array using an atomic operation.
The block number within a cell is obtained and depending on the requested
ratio one of the two algorithms is executed. The code snippet is shown bellow.

__device__ uint smblocks [128] = {0};

__global__ static void reconstruct_hybrid () {

__shared__ uint block;

if (( threadIdx.x == 0)&&( threadIdx.y == 0)) {

uint smid = get_smid ();

block = atomicAdd (& smblocks[smid], 1);

}

__syncthreads ();

if (block &1) reconstruct_tex (...);

else reconstruct_alu (...);

}

In section 5.6 we proposed an advanced thread mapping scheme for the
texture-based kernel. The intention was to keep pixel-to-block assignments



minimal and preserve the performance also for small images. The ALU
kernel, however, aims for larger image sizes and works with 32-by-32 area
at minimum. Therefore, an alternative simpler mapping is utilized for the
texture-based kernel if it is executed as part of the hybrid approach. The
block-to-pixel assignments are kept in sync with the ALU-based kernel. At
each iteration a standard region of 16-by-16 pixels is processed. The thread to
pixel assignments follow the mapping described in section 5.5. Each thread is
responsible for 4 to 16 pixels and processes them in a loop. The same texture
is used to perform linear interpolation in blocks running the texture-based
algorithm and to cache data if the blocks execute the ALU-based reconstruc-
tion. The performance and utilization of GPU subsystems using the different
reconstruction modes is reviewed in Table 22.

In 2-slice reconstruction mode, the performance of the texture-based and
ALU-based kernels is very close. Therefore, half of the blocks run the ALU-
based reconstruction and the other half uses the texture engine. The hybrid
approach outperforms the optimized texture-based method by 30% in this
case. The ALU-based reconstruction is significantly faster if only a single
slice is reconstructed. The SM on Pascal and Maxwell runs up to 8 blocks
with 256 threads each. The ALU reconstruction is executed for 5 blocks
and the texture based reconstruction is performed for other 3. It is possible
to secure 20% higher throughput over the plain ALU-based reconstruction.
Too many registers are required if 4-slices are reconstructed in parallel. Con-
sequently, a low occupancy penalizes the performance of the texture-based
kernel significantly.

While it is possible to use the described approach using the nearest-
neighbor interpolation, in practice there is a little speed-up. The ALU kernel
outperforms the texture-based kernel significantly unless 4-slice reconstruc-
tion is performed using the half-float data. Consequently, there is a little
effect if they are executed in parallel. The proposed method is only suitable
for Maxwell and Pascal architectures. All other devices are bound by the per-
formance of the ALU units. While the Kepler architecture has a very high
ALU performance, ALUs are also utilized to perform rounding operations
to overcome the slow SFU performance. Since the texure-based kernel also
uses ALUs intensively, no performance gains are measured. The used config-
uration and the achieved performance on Maxwell and Pascal platforms are
presented in Table 23.



7.2. Oversampling
There is an alternative approach to improve the utilization of the texture

engine using the ALU-based reconstruction. The idea is to sample several
values for each bin of a sinogram and use the nearest-neighbor instead of lin-
ear interpolation, see Figure 16. While more shared memory is required, the
number of computations and memory transactions is reduced in this case. A
significant speed-up is achieved compared to linear interpolation if 4 values
are sampled for each bin at offsets .00, .25, .50, and .75. Figure 17 compares
the described approach against the reconstructions performed using the near-
est neighbor and linear interpolation. The reconstruction in oversampling
mode is similar to the results obtained using the linear interpolation.

Implementation-wise a few modifications are required for the optimal per-
formance. The amount of used shared memory is quadrupled. To achieve
reasonable occupancy the number of cached projections has to be reduced.
Typically only 4 - 8 projections are processed in parallel. The amount of
available shared memory on Kepler still does not allow to reach 50% occu-
pancy if multiple slices are reconstructed. The performance is significantly
penalized if only 2 projections are cached per iteration. Therefore, the Ke-
pler GPUs are running with occupancy under 50%. On the Kepler-based
Titan card the actual occupancy allowed by shared memory is hinted and
72 registers are used per thread. The GeForce GTX680 is restricted to 63
registers per thread and hinting occupancy bellow 50% is not useful as extra
registers can’t be assigned.

To avoid idling at synchronization point, 32 to 64 threads are used to
cache each projection row. The texture engine is expected to perform linear
interpolation to deliver data at fractional offsets. Consequently, the half-
float data representation can’t be used together with the oversampling. If
the caching of hx is enabled as explained in section 6.8, the first 16 threads
of each warp are assigned to cache the first component of hx vector and
the second half-warp stores the second half of the value. It allows to cache
all required data using a single 32-bit instruction and reduces the required
shared memory bandwidth.

The data locality is significantly worse if the oversampling approach is
used. Up to 4 times more values are accessed by each warp. Consequently,
there is a high possibility of shared memory bank conflicts. To reduce the
amount of conflicts, the data vectors are split if multiple slices are recon-
structed in parallel. The vector components used to represent each sinogram
are extracted after texture fetch and are stored into the 2 - 4 separate caches.



On the systems with 32-bit shared memory, a dedicated buffer is allocated
for each sinogram component. On the platforms preferring 64-bit over 32-bit
loads, the data is split only if 4-slice reconstruction is performed. Two buffers
are used in this case, each storing the sinogram components for a pair of re-
constructed slices. During the accumulation step, the values are extracted
from all caches using the same index and re-combined into the appropriate
vector again. To allow 64-bit writes also during a single-slice reconstruction,
the re-combination of shared memory writes is performed as explained in
section 6.3 and 2 bins are cached per thread at each iteration on the Kepler
platform. The used configuration and achieved performance are summarized
in the table 24.

8. Conclusion

We have surveyed a range of GPGPU architectures presented by the ma-
jor hardware vendors in the last 10 years. Table 10 lists architecture details
and summarizes rather considerable shifts of the performance balance be-
tween different hardware pipelines. The throughput ratio between the float-
ing point and type-conversion instructions has fluctuated 8-fold. The type-
conversions are executed at a half rate of the peak floating-point performance
on AMD GCN GPUs, but only a single type-conversion instruction can be
executed per 12 floating-point operations on NVIDIA Kepler GPUs (consid-
ering the peak rates). On the other hand, the type-conversion instructions
can be executed in parallel with floating-point operations on NVIDIA Ke-
pler, but not on AMD GCN. The ratio between the theoretical throughput of
floating-point instructions and the shared memory bandwidth has changed
2.6 times among the reviewed architectures. 2-fold change is reported be-
tween the throughput of floating point operations and the filtering rate of
the texture engine. Furthermore, we found that even more considerable archi-
tectural changes are introduced in some products. AMD has replaced VLIW
architecture with GCN effectively moving from instruction level parallelism
to SIMT-only model. On NVIDIA platforms, execution of bit mangling and
type conversion operations was shifted between ALU and SFU units. On
recent architectures half-float and Tensor Units have been introduced to ac-
celerate machine learning algorithms. The study demonstrates that these
changes are highly relevant to the performance of developed algorithms and
a significant speed-up is possible if low-level details of GPU architecture are
taken into the consideration. In addition to GPU architectures, we also re-



viewed Intel Xeon-Phi technology in section 6.10. We show that the OpenCL
algorithms developed for GPUs are barely suited for this architecture due to
the different scheduling model. The standard threaded code seems easier to
implement and is a better fitting approach for the general-purpose CPUs and
Intel accelerators based on Xeon Phi technology.

We present two algorithms to perform fast back-projection on the variety
of GPU architectures. The first utilizes the texture engine to interpolate the
data. The second algorithm relies on ALU units and shared memory. Fur-
thermore, we proposed two hybrid approaches to combine these methods and
achieved an even higher performance by balancing the load across the GPU
subsystems. In section 5.2 we show that a higher utilization of the texture
engine can be achieved if the data is re-arranged in larger vector types. Such
vectors are streamed by the texture engine at the same rate as simple floating-
point numbers provided that the high locality of the texture fetches can be
ensured across half-wraps and also within groups of 4-consecutive threads.
On some architectures we can further double performance by switching to
a half-precision data representation in price of some penalty to the image
quality. The only requirement is the ability of the hardware to perform high-
speed transformation between half- and single-precision formats of floating
point numbers. Even if half-precision floating point numbers are not directly
supported by the texture engine, in section 5.3 we demonstrated that they
still can be efficiently utilized by binding a texture with the forged data
type. To reach the theoretical rate of the texture engine, the performance
bottleneck caused by the low throughput of constant memory and SFU units
is resolved by re-assigning work between GPU threads as explained in sec-
tion 5.6. While this approach results in a lower occupancy on the AMD
platform, the resulting performance is considerably improved especially on
AMD VLIW-based GPUs. On the NVIDIA platform we are able to enforce
100% occupancy instead, see section 5.7. Consequently, a relatively large
amount of local memory is used, but it is completely backed by the L1 cache
and the performance is improved significantly on most NVIDIA architec-
tures as well. As can be seen from Figure 6, a high utilization of the texture
engine is achieved across all hardware platforms. The algorithm is highly
portable and only a minor tuning to the specific hardware is required. In
contrast, the ALU-based algorithm requires significant adaptions for some
of the considered architectures. As we have shown in section 6.5, different
functional blocks may limit the algorithm performance depending on the
underlying hardware. Consequently, we were able to significantly boost its



performance by re-balancing load of these functional blocks. For Maxwell
and Pascal micro-architectures, we run both algorithms in parallel efficiently
redistributing load between texture engine, shared memory, and ALUs. This
approach is explained in section 7.1. Because of slow throughput of Keplers
SFU units, in section 6.6 we proposed an alternative method to perform
rounding and type-conversion operations using ALUs instead of SFUs. Con-
sequently, part of SFU load is shifted to ALUs and a higher performance
is achieved. In section 6.8, we introduce additional caches for Fermi archi-
tecture to reduce the total number of issued instructions. For AMD VLIW
architecture, we significantly increase an amount of work per GPU thread.
Consequently, the kernel runs at a very low occupancy but utilizes the in-
struction level parallelism better. In section 6.9 we also discuss the optimal
occupancy across other architectures. It depends on the amount of available
hardware registers, kernel complexity, and also the ratio between memory
and ALU/SFU instructions. We show that targeting both higher and lower
occupancy may bring a considerable speedup under different conditions.

Different algorithms can be used to better target a varying balance of sub-
system performances in each GPU architecture. We have also shown that it
is viable to utilize multiple algorithms in parallel if they are primarily aimed
at the different hardware units. The optimal ratio between algorithms can be
ensured on NVIDIA platform allowing the balanced usage of all GPU com-
ponents. The recommended algorithms for each platform are summarized
in Table 25. The nearest-neighbor interpolation performs significantly faster
on the majority of the considered platforms if the ALU-based algorithm is
used. Except on Kepler, the linear interpolation is also accelerated if ALU
variant is used either alone or in combination with the texture-based algo-
rithm. If the exact agreement with the standard algorithm is not required,
an additional speed-up can be achieved by using the half-float data repre-
sentation or by replacing the linear interpolation with a combination of the
oversampling and the nearest-neighbor approach as explained in section 7.2.
There is still rapid progress in parallel hardware and new architectures are
announced yearly. To port the algorithms to new devices, the algorithm con-
figuration can be parametrized and a quick search in the parameters space
be executed to find the optimal settings. This approach would not deliver
the optimal performance if new functional blocks are introduced in the ar-
chitecture. However, it can address the shifts in the operation balance.

Figure 18 illustrates the history of NVIDIA platform from 2009 to 2016.
While the performance of the standard algorithm has grown on the pair



with the hardware improvements, the optimized algorithms got an additional
boost from utilizing parallelism between GPU subsystems. The speed-up of
the optimized back-projection algorithms significantly outperform the respec-
tive grow of the hardware performance. Particularly, using new ALU-based
algorithm we boosted performance by 3 - 5 times on the Fermi architecture.
In the same time, the peak throughput of the floating-point instruction has
been only been improved by 50%. The balance of operations has changed on
the Kepler architecture significantly. The throughput of bit-mangling and
type-conversion operators has been even reduced on GTX680 if compared to
GTX580. We still were able to preserve steady grow of the performance by
optimizing usage of the texture engine and re-balancing load between SFUs
and ALUs. Due to ability to utilize texture engine in parallel with ALUs, on
Maxwell and Pascal architectures the algorithm performance again increased
above the improvements of the hardware.

NVIDIA Titan X is the newest of the evaluated GPUs. Here, we were
able to accelerate the code by 2.5 times using the linear interpolation with-
out loss of image quality. The proposed algorithm is 3.5 times faster if the
nearest-neighbor interpolation is required. Even if the reconstruction chain
is only able to process a single-slice at a time, the proposed hybrid approach
is 2 times faster then the standard algorithm. The achieved speed-up across
all platforms is presented in Figure 19. Some architectures can be acceler-
ated as much as 7 times against the state-of-the-art method. The high-speed
reconstruction is of a significant importance for imaging at synchrotron fa-
cilities and allows to improve spatial and temporal resolutions of beam-line
instrumentation. The back-projection algorithm is also utilized in iterative
reconstruction techniques aiming for high-quality reconstruction. Therefore,
the faster implementation lowers the computational demands for high-quality
offline reconstruction as well. Furthermore, the general concept of balanc-
ing the load among the computational units of the GPU is not limited the
presented tomographic reconstruction but rather suggested for any compu-
tational intense task.
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Figure 1: Shepp-Logan phantom used for quality evaluation. All profile plots in the article
are shown along the red vertical line.



Texture Cache
Constant

Cache
L1 

Cache

Tex Tex Tex Tex LDST LDST LDST LDST LDST LDST LDST

Registers Local Memory

ALU ALU

Global GPU Memory

L2 Cache

Block Scheduler

Shared
Memory

Warp Scheduler

SIMD Set 

ALU ALU

SIMD Set 

ALU ALU

SIMD Set 

DP DP

SIMD Set 

SFU

 S.Set 

ALU ALU ALU ALU ALU ALU DP DP SFU

ALU ALU ALU ALU ALU ALU DP DP SFU

ALU ALU ALU ALU ALU ALU DP DP SFU

ALU ALU ALU ALU ALU ALU DP DP SFU

ALU ALU ALU ALU ALU ALU DP DP SFU

ALU ALU ALU ALU ALU ALU DP DP SFU

ALU ALU ALU ALU ALU ALU DP DP SFU

Warp Scheduler

Instruction Cache

SM

P
C

Ie
 B

us

System
Memory

Network

FPGA

GPU4

GPU3

GPU2

LDST

DMA
Engines

GPU1

A
rc

hi
te

ct
ur

e 
of

 S
tr

ea
m

in
g 

M
ul

tip
ro

ce
ss

or
 (

S
M

)

SM

Figure 2: Generalized scheme of GPU architecture. A typical GPU includes DMA en-
gines, Global GPU memory, L2 cache, and multiple Streaming Multiprocessors (SM). The
integrated DMA engines are primarily used to exchange data between GPU and system
memory over PCIe bus, but also can be utilized to communicate with other devices at
the PCIe bus (right). Each SM includes several types of caches and computational units
(left).
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interpolation is used to measure performance if 4 slices are reconstructed in parallel. On
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Input: Texture and the projection constants cC∗ . Dimensions (n∗) and parameters
(v∗) as specified in Table 5. The indexes (m∗) and other used variables are
described in Table 6 and 7. Mappings ~m2

t and mp are computed as
explained in Algorithm 2.

Shared: s̃S [64][4], r̃S [16][16]
Output: Reconstructed slice r̃G

begin
/* Computing pixel coordinates using the new mapping */

~m2
g = ~mb ∗ ~nt + ~m2

t

~f ′g = ~m2
g − ~va

/* Computing partial sums */

s̃[4] = {0}
for (p = mp; p < np; p += 4)

cs = cCs [p].y

h = cCa [p] + f ′g.x ∗ cCc [p]− f ′g.y ∗ cCs [p] + 0.5

for (q = 0; q < 4; q += 1)
s̃[q] += tex2d(h, p + 0.5)
h −= 4 ∗ cs

end

end
/* Reduction */

~m3
t = {mt.x % 4, 4 ∗mt.y + mt.x / 4}

for (q = 0; q < 4; q += 1)
/* Moving partial sums to shared memory */

s̃S [nt.x ∗m2
t .y + m2

t .x][mp] = s̃[q]
sync

/* Performing reduction */

for (i = 2; i ≥ 1; i /= 2)
if m3

t .x < i then
s̃S [m3

t .y][m3
t .x] += s̃S [m3

t .y][m3
t .x + i]

end
fence

end
/* To coalesce global memory writes, results are grouped in shared memory */

if m3
t .x == 0 then
r̃S [4 ∗ q + m3

t .y / 16][m3
t .y % 16] = s̃S [m3

t .y][0]
end

sync

end

r̃G[mg.y][mg.x] = r̃S [mt.y][mt.x]

end

Algorithm 3: Optimized implementation of the back-projection kernel relaying on the
texture engine to perform interpolation



for (q = 0; q < 4; q += 1)
/* Moving partial sums to shared memory */

s̃S [nt.x ∗m2
t .y + m2

t .x][mp] = s̃[q]
sync

/* Performing reduction */

r̃ = s̃S [m2
t .y][m2

t .x]
for (i = 2; i ≥ 1; i /= 2)

r̃ += shfl xor(r̃, i, 4)
end
/* To coalesce global memory writes, the results are grouped in shared memory */

if m3
t .x == 0 then
r̃S [4 ∗ q + m3

t .y / 16][m3
t .y % 16] = r̃

end
sync

end

Algorithm 4: The reduction loop of Algorithm 3 using shuffle instruction

Input: Similar to Algorithm 3, but projection constants cG∗ are provided in global
GPU memory

Shared: ~cScs[sp], cSa [sp]
for (pb = 0; pb < np; pb += sp)

/* Caching projection constants in shared memory */

ml = mt.y ∗ nt.x + mt.x

~cScs[ml] = {cGc [pb + ml], c
G
s [pb + ml]}

cSa [ml] = cGa [pb + ml]
sync

/* Computing partial sums */

for (p = mp; p < min(sp, np − pb); p += 4)
cs = cScs[p].y

h = cSa [p] + f ′g.x ∗ cScs[p].x− f ′g.y ∗ cScs[p].y + 0.5

for (q = 0; q < 4; q += 1)
s̃[q] += tex2d(h, pb + p + 0.5)
h −= 4 ∗ cs

end

end
sync

end

Algorithm 5: The main loop of Algorithm 3 modified to cache geometrical constants in
the shared memory



Table 12: Occupancy and performance of NVIDIA GeForce GTX Titan (Kepler) using
2-slice reconstruction mode

Restricted Registers Local Mem. Occupancy Performance
No 38 - 75% 320 GU/s
Yes 32 24 bytes 100% 368 GU/s

Table 13: Performance and configuration of cache-aware texture-based back-projection
kernel

Configuration
GPU nv Perf. Occupancy L1/ShMem Cache

GTX295 1 49 GU/s 75% - -

GTX580
1 49 GU/s 50% 16/48 -
2 97 GU/s 50% 16/48 -
4 172 GU/s 50% 16/48 -

GTX680
1 118 GU/s 100% 16/48 -
2 232 GU/s 100% 32/32 -

Titan
1 200 GU/s 100% 16/48 -
2 362 GU/s 100% 32/32 -

GTX980
1 155 GU/s 100% - -
2 304 GU/s 100% - -
4 555 GU/s 75% - -

Titan X
1 389 GU/s 100% - -
2 726 GU/s 100% - -
4 1396 GU/s 75% - -

HD5970 1 56 GU/s - - 256
HD7970 1 115 GU/s - - 256
R9-290 1 146 GU/s - - 256

The table summarizes the performance and optimal configuration for the texture-based back-projection
kernel. Information is provided for all supported slice-modes.
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Input: Texture and the projection constants cC∗ . Dimensions (n∗), cache sizes
(s∗), and parameters (v∗) as specified in Table 5. The used variables are
described in Table 6 and 7.

Assume: ns = 32, nq = 4, st = 16, si = 3

Shared: d̃S [sd][ 32 ∗ ns], h̃
S
m[sd]

Output: Reconstructed slice r̃G

begin
/* Simplified mapping */

{md,mp} = ~mt

m′t = {nt ∗ (mt.y % 2) + mt.x,mt.y / 2}
m′g = {ns ∗mb.x + m′t.x, ns ∗mb.y + m′t.y}
/* Set accumulators to 0 and run projection loop */

s̃[nq] = {0}
for (pb = 0; pb < np; pb += sd)

if mp < sd then
/* Compute the minimal required bin */

p = pb + mp

hb = cCa [p] + fb.x ∗ cCc [p]− fb.y ∗ cCs [p]

hm = floor(hb + cCm[p])
/* Cache it in the shared memory */

if md == 0 then
hS
m[mp] = cCa [p]− hm

end
/* Cache the data in the shared memory */

for (i = 0; i < si; i += 1)
h = i ∗ st + md

d̃S [mp][h] = tex2d(hm + h + 0.5, p + 0.5)

end

end
sync

for (pi = 0; pi < sd; pi += 1)
p = pb + pi
cs = cCs [p]

h = hS
m[pi] + f ′g.x ∗ cCc [p]− f ′g.y ∗ cCs [p]

for (q = 0; q < nq; q += 1)
/* Compute the offset in cache */

hi = floor(h)
hl = h− hi

/* Iterpolate */

d̃1 = d̃S [pi][hi]

d̃2 = d̃S [pi][hi + 1]− d̃1
s̃[q] += d̃1 + hl ∗ d̃2
/* Move to the next position */

h −= (ns / nq) ∗ cs
end

end
sync

end
/* Save the results to global memory */

for (q = 0; q < nq; q += 1)
r̃G[m′g.y + 8 ∗ q][m′g.x] = r̃[q]

end

end

Algorithm 6: ALU-based implementation of the back-projection kernel



for (i = 0; i < si; i += 1)
h = 2 ∗ (i ∗ st + md)
d1 = tex2d(hm + h + 0.5, p + 0.5)
d2 = tex2d(hm + h + 1.5, p + 0.5)

*(float2)(&d̃S [mp][h]) = (float2){d1, d2}
end

Algorithm 7: The caching stage of Algorithm 6 optimized for architectures with 64-bit
shared memory

begin
for (i = 0; i < si; i += 1)

h = i ∗ st + md

d̃ = tex2d(hm + h + 0.5, p + 0.5)
~dS1 [mp][h] = (float2){d.x, d.y}
~dS2 [mp][h] = (float2){d.z, d.w}

end
...

d̃1 = (float4){~dS1 [pi][hi], ~d
S
2 [pi][hi]}

d̃2 = (float4){~dS1 [pi][hi + 1], ~dS2 [pi][hi + 1]}
d̃2 = d̃2 − d̃1

...

end

Algorithm 8: Modification of Algorithm 6 to split the 4-slice cache as required on Fermi
and AMD architectures

begin
h = si ∗md

d1 = tex2d(hm + h + 0.5, p + 0.5)
d = d1
for (i = 0; i < (si − 1); i += 1)

dn = tex2d(hm + i + 1.5, p + 0.5)
~dS [mp][h + i] = (float2){d, dn − d}
d = dn

end
d1 =shfl down (d1, 1, st)
~dS [mp][h + (si − 1)] = (float2){d, d1 − d}

end

Algorithm 9: Advanced Caching Mode for Algorithm 6
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Figure 12: The assignment of block threads to pixels as proposed for ALU-based recon-
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Table 14: The optimal parameters to prevent shared memory bank conflicts in ALU-based
reconstruction kernel

Standard Caching Mode (see section 6.3)
Area nv Platform Threads Optimizations

32x32

1
32-bit 16 -
64-bit 8 write64

2
32-bit 16 -
64-bit 16 -

4
AMD & Fermi 16 double-buffer
Kepler+ 16 -

64x64

1
32-bit 32 -
64-bit 16 write64

2
32-bit 32 -
64-bit 32 -

4
AMD & Fermi 32 double-buffer
Kepler+ 32 -

Advanced Caching Mode (see section 6.4)
Area nv Platform Threads Optimizations
32x32 1 All 16 -
64x64 1 All 32 -

For each considered configuration, the number of threads per projection row and the required optimiza-
tions are specified. The double-buffer optimization splits the shared memory cache in 2 parts to prevent
bank conflicts on the NVIDIA Fermi and all considered AMD architectures. The write64 optimization
combines two writes to shared memory to use full bandwidth of Kepler GPUs.
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Table 15: Estimated and measured number of different operations required to perform
back-projection using linear interpolation

SFU Int FP Shared Constant
Estimated 2.03125 1.3125 4.625 1.125 0.265625
Measured 2.032125 5.87 1.265625 0.297875

The table gives the number of operations required to perform back-projection of a single slice using
linear-interpolation, processing 4 pixels per GPU thread, and with the advanced caching mode enabled.
The measured values are obtained on NVIDIA GeForce Titan X (Pascal) using nvprof. The SFU usage
is represented by value of inst bit convert metric. It is impossible integer multiplications from other
instructions executed on ALU. Therefore, a common number is given based on the sum of inst fp 32 and
inst integer metrics. The shared memory operations are given as a sum of counts for shared store and
shared load events. To estimate number of constant memory operations, from the number of executed
load/store instructions obtained using ldst executed metric we have subtracted all other memory operations
which are reported as shared store, shared load, and global store events and all texture transactions which
are counted in tex cache transactions metric.

Table 16: Performance estimates according to model

GPU Mem ALU SFU OPS Limit
GTX580 145 99 - 97 Instructions
GTX680 188 334 77 252 SFU

Titan 325 577 133 436 SFU
GTX980 234 432 315 628 Memory
Titan X 576 1062 776 1545 Memory
HD5970 169 145 114 114 SFU
HD7970 346 238 - 1160 ALU
R9-290 443 304 - 1485 ALU

The table gives the estimates for maximum performance of back-projection kernel and reports the per-
formance bottleneck for each considered GPU. The numbers are given in giga-updates per second. The
performance limit for each execution unit is evaluated separately and the minimum throughput bounding
the kernel performance is highlighted. The estimation is made for a kernel configured to run linear-
interpolation and process 4 pixels per GPU thread and running in the single slice reconstruction mode
with advanced caching enabled.
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Table 17: Different interpolation modes on Titan (Kepler) GPU

Instructions
Method Performance FP Integer Bit-convert
Stanard 165 GU/s 4.5 1.4 2.03
FP round 197 GU/s 7.5 1.4 0.03
FP round & index 182 GU/s 8.5 1.4 0.03

The table compares performance of 3 different rounding modes described in section 6.6. The perfor-
mance is measured on the Kepler-based Titan GPU and the number of issued instructions is obtained
using NVIDIA profiler. The number of floating point and integer operations is reported by inst fp 32 and
inst integer metrics correspondingly. The integer counter includes both additions/subtractions executed
on ALU and iSCADD operations executed on SFU. Consequently, the number of integer operations is con-
stant because the iSCADD instruction is just replaced with integer addition. The bit-convert instructions
are reported as inst bit convert and actually represent the rounding and type-mangling operations.

Table 18: Suggested cache settings for ALU-based reconstruction kernel

Caches

GPU nv d̃ hm/hx cs sp

Fermi
1, 2 Adv. hx cs -

4 Adv. hm cs -

Kepler, Maxwell, Pascal
1 Adv. hm cs -

2, 4 Std. hm - -

VLIW
1 Adv. hm - 256

2, 4 Std. hm - 256

GCN
1 Adv. hx - 256

2, 4 Std. hx - 256

GCN2
1 Adv. hm - -

2, 4 Std. hm - -

Table 19: The effect of occupancy-targeting on the performance for NVIDIA Titan X
GPU

Linear Interpolation Mode
Target Registers Local Memory Occupancy Performance
- 40 - 75% 565 GU/s
50% 64 - 50% 570 GU/s
100% 32 8 bytes 100% 620 GU/s

Nearest Neighbour Interpolation Mode
Target Registers Local Memory Occupancy Performance
- 48 - 62% 1082 GU/s
50% 64 - 50% 1158 GU/s
100% 32 40 bytes 100% 954 GU/s

A single slice reconstruction is executed with the settings configured according to Table 20 with the only
exception of occupancy which is set as specified in the Target column.



Table 20: Performance and configuration of ALU-based back-projection kernel

Perf. (GU/s) Configuration
GPU nv Lin NN nq sd U R O

GTX580
1 80 120 4 16 - SFU 75%
2 113 188 4 16 - SFU 50%
4 142 247 4 8 2 - SFU 50%

GTX680
1 123 195 83 84 4 ALU 50%
2 160 290 8 8 2 ALU 50%
4 165 306 4 8 2 SFU 50%

Titan
1 195 268 83 84 4 ALU 50%
2 237 429 8 8 2 ALU 50%
4 278 471 4 8 2 SFU 50%

GTX980
1 218 452 16 8 - SFU 100%5

2 269 510 16 8 - SFU 50%
41 292 567 4 16 - ALU 50%

Titan X
1 606 1161 16 8 - SFU 100%5

2 692 1328 16 8 - SFU 50%
41 743 1405 4 16 - ALU 50%

HD5970
1 63 116 16 83 - - -
2 71 146 8 16 - - -
4 73 160 8 8 - - -

HD7970
1 178 290 16 83 - - -
2 221 430 43 166 - - -
4 233 450 4 8 - - -

R9-290
1 219 341 16 8 - - -
2 298 582 43 166 - - -
4 383 635 4 16 - - -

The table summarizes the performance and optimal configuration for the ALU-based back-projection
kernel. The performance is reported for the linear and nearest neighbor interpolation modes. The config-
uration specifies: nq - a number of pixels per thread, sd - a number of cached projections, U - unrolling
hint for inner projection loop, R - the units to perform rounding and type conversions (index is always
computed using SFU), O - the desired occupancy. The caches are configured as specified in Table 18. The
number of threads to cache a projection row is determined according to guidelines in Table 14.
1 The configuration and performance are specified for half-float data representation. The half-float values
are also cached in the shared memory.
2 Because of the reduced shared memory requirements, 16 projections are cached in the nearest neighbor
interpolation mode.
3 A larger 64x64 area is reconstructed if nearest neighbour interpolation is performed. The 16 pixels are
assigned to each GPU thread.
4 Each GPU thread caches 2 values per iteration to enable 64-bit writes if nearest neighbor interpolation
is used. Consequently, only 16 threads are used per projection row and 16 projections are cached to utilize
all threads.
5 The 50% occupancy is targeted in nearest-neighbor interpolation mode.
6 Since 64x64 blocks are assigned to the thread block in the nearest-neighbor interpolation mode, the 32
threads are used per projection row and only 8 projections are cached.



Table 21: Performance using general-purpose processors

2x Xeon X5650 Xeon Phi 5110P
Method nv AMD Intel Intel

PyHST 12 9.3 GU/s -

Standard
1 1.2 GU/s 3.6 GU/s 16.2 GU/s
4 4.2 GU/s 10.2 GU/s 12.1 GU/s

Synchronized
1 0.9 GU/s 3.9 GU/s
4 3.2 GU/s 10.6 GU/s

ALU algorithm
1 0.9 GU/s 6.1 GU/s 2.7 GU/s
4 3.7 GU/s 14.1 GU/s 0.2 GU/s

Table 22: Utilization of functional units in hybrid reconstruction mode

Method Texture Shared ALU SFU Perf.
Tex-based 100% 20% 40% 10% 726 GU/s
ALU-based 10% 90% 60% 50% 693 GU/s
Hybrid 70% 70% 70% 40% 995 GU/s
Oversampling 20% 90% 50% 40% 1107 GU/s

Utilization of NVIDIA GeForce Titan X (Pascal) subsystems using different reconstruction algorithms.
Two slices are reconstructed in parallel according to the configuration given in tables 13 and 20. The
utilization is obtained using nvprof based on the following metrics: tex fu utilization, shared utilization,
single precision fu utilization, special fu utilization.

Table 23: Performance and configuration of hybrid back-projection kernel

Perf Configuration
GPU nv GU/s T/A nq sd U R O

GTX980
1 266 3/5 16 8 - SFU 100%
2 389 1/1 4 16 - SFU 100%

Titan
1 734 3/5 16 8 - SFU 100%
2 995 1/1 4 16 - SFU 100%

The table summarizes the performance and optimal configuration for the hybrid back-projection kernel.
Both texture engine and ALUs are used to perform interpolation. The configuration specifies: T/A - is
a ratio between the blocks executing Texture-based reconstruction and the blocks running ALU-based
algorithm, nq - a number of pixels per thread, sd - a number of cached projections, U - unrolling hint for
inner projection loop, R - the units to perform rounding and type conversions (index is always computed
using SFU), O - the requested occupancy. The caches are configured as specified in Table 18. The number
of threads to cache a projection row is determined according to guidelines in Table 14.
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Figure 16: The figure illustrates the oversampling reconstruction approach. To reconstruct
a 32x32 pixel square, a thread block caches 192 values per projection (left). The values
are fetched from 48 bins at uniform intervals using the texture engine. Then, the recon-
struction is performed and projections are processed in a loop one after another (right).
To determine required position in the cache, the offset from the first bin of the cache is
multiplied by 4 and the result is rounded to the nearest integer. The value at this position
is loaded from the array and used to update pixel value.
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Figure 17: Comparison of the reconstructions performed using nearest neighbor (NN )
and linear interpolation with the hybrid oversampling approach (overs). The profile plot
along the selected line is shown in the top part of the figure for the phantom and all
reconstruction methods. The absolute difference from precise phantom image is shown
along the same line in the bottom part.



Table 24: Performance and configuration of ALU-based back-projection kernel performing
oversampling-based interpolation

Perf Configuration
GPU nv GU/s nq C st/sd U R O

GTX580
1 80 4 1 32 / 8 - SFU 75%
2 116 4 2 32 / 8 - SFU 50%
4 142 4 4 64 / 4 2 SFU 50%

GTX680
1 123 16 1 32 / 41 4 ALU2 50%
2 160 8 1 32 / 4 2 ALU 50%
4 165 4 2 64 / 4 2 SFU 50%

Titan
1 195 16 1 32 / 41 4 ALU2 50%
2 237 8 1 32 / 4 2 ALU 43%
4 279 4 2 64 / 4 2 SFU 37%

GTX980
1 218 16 1 32 / 8 - SFU 50%
2 269 16 2 64 / 4 - SFU 50%
4 292 4 4 64 / 4 2 SFU 50%

Titan X
1 606 16 1 32 / 8 - SFU 50%
2 693 16 2 64 / 4 - SFU 50%
4 743 4 4 64 / 4 2 SFU 50%

HD5970
1 63 16 1 32 / 81 - - -
2 71 8 1 32 / 4 - - -
4 73 8 2 32 / 4 2 - -

HD7970
1 178 16 1 32 / 81 - - -
2 222 4 1 32 / 8 - - -
4 233 4 2 64 / 4 2 - -

R9-290
1 219 16 1 32 / 8 - - -
2 298 4 2 32 / 8 - - -
4 384 4 4 64 / 4 2 - -

The table summarizes the performance and optimal configuration for the ALU-based back-projection
kernel if oversampling and nearest neighbor interpolation are used to update values of reconstructed
pixels. The configuration specifies: nq - a number of pixels per thread, C - a number of separate arrays
used to cache singoram (either a dedicated array is used to store each component of sinogram vector or
two components are stored together to allow 64-bit writes), st/sd - a number of threads used to cache
projection row and a number cached projections, U - unrolling hint for inner projection loop, R - the
units to perform rounding and type conversions (index is always computed using SFU), O - the desired
occupancy. The caches are configured as specified in Table 18.
1 Each GPU thread caches 2 values per iteration to enable 64-bit writes.
2 The use of SFU is also avoided while resolving array addresses, see section 6.6.



Table 25: Suggested algorithms

Linear Nearest Neighbor
GPU Mode S Precise Appr. S Precise Appr.

GT200 Single 1 TEX TEX 1 TEX
Fermi * 4 ALU Overs. 4 ALU

Kepler
Single 1 TEX Overs. 1 ALU
Multi 2 TEX TEX 4 ALU

Mxwl+
Single 1 Hybrid Overs. 1 ALU
Multi 2 Hybrid Overs. 4 ALU TEX/Half

VLIW Single 4 ALU Overs. 1 ALU
Multi 4 ALU Overs. 4 TEX

GCN * 4 ALU Overs. 4 ALU

The table specifies the fastest algorithms to implement back-projection kernel with linear or nearest-
neighbor interpolation at each platform. Individual recommendations are given for the single-slice and
multi-slice reconstruction modes. The recommended number of slices is given in column S. The options
for precise and approximate reconstructions are proposed. In precise mode, the obtained reconstruction is
exactly the same as one produced by the standard reconstruction method. In approximate mode, either
a half-float data representation is used to accelerate nearest-neighbor interpolation or the oversampling
approach is combined with nearest neighbor interpolation to substitute linear interpolation. The perfor-
mance and optimal configuration for the texture-based algorithm is listed in Table 13. The ALU-based
algorithm is described in Table 20 and its oversampling modification is given in Table 24. The hybrid
approach is defined in Table 23.
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Figure 18: The figure evaluates the theoretical peak throughput of GPU subsystems and
the measured performance of standard and optimized back-projection algorithms. The
speed-up against NVIDIA GeForce GTX295 is shown in the left part of the figure. The
relative speed-up between consecutive architectures is shown in the right part.
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Figure 19: The figure lists the performance improvements of the proposed algorithms
using the linear and nearest-neighbor interpolation modes. The speed-up against the
standard implementation is measured across all architectures. The black bars show the
improvements of a single slice reconstruction performance achieved using the new texture-
based kernel due to the optimized fetch locality and reduced load on the constant memory.
The blue bars show the increased speed-up using the multi-slice reconstruction. The green
bars indicate if the alternative ALU-based kernel outperforms the texture based approach
and the achieved gains. The performance of the hybrid approach is shown using the orange
color. The last two bars show additional speed-up with approximate methods which do
not replicate results of the standard method exactly.


