summaryrefslogtreecommitdiffstats
path: root/src/Core/regularisers_CPU/TNV_core.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/Core/regularisers_CPU/TNV_core.c')
-rwxr-xr-xsrc/Core/regularisers_CPU/TNV_core.c948
1 files changed, 569 insertions, 379 deletions
diff --git a/src/Core/regularisers_CPU/TNV_core.c b/src/Core/regularisers_CPU/TNV_core.c
index 753cc5f..be7fdef 100755
--- a/src/Core/regularisers_CPU/TNV_core.c
+++ b/src/Core/regularisers_CPU/TNV_core.c
@@ -5,6 +5,12 @@
*
* Copyright 2017 Daniil Kazantsev
* Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Copyriht 2020 Suren A. Chlingaryan
+ * Optimized version with 1/3 of memory consumption and ~10x performance
+ * This version is not able to perform back-track except during first iterations
+ * But warning would be printed if backtracking is required and slower version (TNV_core_backtrack.c)
+ * could be executed instead. It still better than original with 1/2 of memory consumption and 4x performance gain
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -19,6 +25,467 @@
#include "TNV_core.h"
+#define min(a,b) (((a)<(b))?(a):(b))
+
+inline void coefF(float *t, float M1, float M2, float M3, float sigma, int p, int q, int r) {
+ int ii, num;
+ float divsigma = 1.0f / sigma;
+ float sum, shrinkfactor;
+ float T,D,det,eig1,eig2,sig1,sig2,V1, V2, V3, V4, v0,v1,v2, mu1,mu2,sig1_upd,sig2_upd;
+ float proj[2] = {0};
+
+ // Compute eigenvalues of M
+ T = M1 + M3;
+ D = M1 * M3 - M2 * M2;
+ det = sqrtf(MAX((T * T / 4.0f) - D, 0.0f));
+ eig1 = MAX((T / 2.0f) + det, 0.0f);
+ eig2 = MAX((T / 2.0f) - det, 0.0f);
+ sig1 = sqrtf(eig1);
+ sig2 = sqrtf(eig2);
+
+ // Compute normalized eigenvectors
+ V1 = V2 = V3 = V4 = 0.0f;
+
+ if(M2 != 0.0f)
+ {
+ v0 = M2;
+ v1 = eig1 - M3;
+ v2 = eig2 - M3;
+
+ mu1 = sqrtf(v0 * v0 + v1 * v1);
+ mu2 = sqrtf(v0 * v0 + v2 * v2);
+
+ if(mu1 > fTiny)
+ {
+ V1 = v1 / mu1;
+ V3 = v0 / mu1;
+ }
+
+ if(mu2 > fTiny)
+ {
+ V2 = v2 / mu2;
+ V4 = v0 / mu2;
+ }
+
+ } else
+ {
+ if(M1 > M3)
+ {
+ V1 = V4 = 1.0f;
+ V2 = V3 = 0.0f;
+
+ } else
+ {
+ V1 = V4 = 0.0f;
+ V2 = V3 = 1.0f;
+ }
+ }
+
+ // Compute prox_p of the diagonal entries
+ sig1_upd = sig2_upd = 0.0f;
+
+ if(p == 1)
+ {
+ sig1_upd = MAX(sig1 - divsigma, 0.0f);
+ sig2_upd = MAX(sig2 - divsigma, 0.0f);
+
+ } else if(p == INFNORM)
+ {
+ proj[0] = sigma * fabs(sig1);
+ proj[1] = sigma * fabs(sig2);
+
+ /*l1 projection part */
+ sum = fLarge;
+ num = 0l;
+ shrinkfactor = 0.0f;
+ while(sum > 1.0f)
+ {
+ sum = 0.0f;
+ num = 0;
+
+ for(ii = 0; ii < 2; ii++)
+ {
+ proj[ii] = MAX(proj[ii] - shrinkfactor, 0.0f);
+
+ sum += fabs(proj[ii]);
+ if(proj[ii]!= 0.0f)
+ num++;
+ }
+
+ if(num > 0)
+ shrinkfactor = (sum - 1.0f) / num;
+ else
+ break;
+ }
+ /*l1 proj ends*/
+
+ sig1_upd = sig1 - divsigma * proj[0];
+ sig2_upd = sig2 - divsigma * proj[1];
+ }
+
+ // Compute the diagonal entries of $\widehat{\Sigma}\Sigma^{\dagger}_0$
+ if(sig1 > fTiny)
+ sig1_upd /= sig1;
+
+ if(sig2 > fTiny)
+ sig2_upd /= sig2;
+
+ // Compute solution
+ t[0] = sig1_upd * V1 * V1 + sig2_upd * V2 * V2;
+ t[1] = sig1_upd * V1 * V3 + sig2_upd * V2 * V4;
+ t[2] = sig1_upd * V3 * V3 + sig2_upd * V4 * V4;
+}
+
+
+#include "hw_sched.h"
+typedef struct {
+ int offY, stepY, copY;
+ float *Input, *u, *qx, *qy, *gradx, *grady, *div;
+ float *div0, *udiff0, *udiff;
+ float resprimal, resdual;
+ float unorm, qnorm, product;
+} tnv_thread_t;
+
+typedef struct {
+ int threads;
+ tnv_thread_t *thr_ctx;
+ float *InputT, *uT;
+ int dimX, dimY, dimZ, padZ;
+ float lambda, sigma, tau, theta;
+} tnv_context_t;
+
+HWSched sched = NULL;
+tnv_context_t tnv_ctx;
+
+
+static int tnv_free(HWThread thr, void *hwctx, int device_id, void *data) {
+ int i,j,k;
+ tnv_context_t *tnv_ctx = (tnv_context_t*)data;
+ tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
+
+ free(ctx->Input);
+ free(ctx->u);
+ free(ctx->qx);
+ free(ctx->qy);
+ free(ctx->gradx);
+ free(ctx->grady);
+ free(ctx->div);
+
+ free(ctx->div0);
+ free(ctx->udiff0);
+ free(ctx->udiff);
+
+ return 0;
+}
+
+static int tnv_init(HWThread thr, void *hwctx, int device_id, void *data) {
+ tnv_context_t *tnv_ctx = (tnv_context_t*)data;
+ tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
+
+ int dimX = tnv_ctx->dimX;
+ int dimY = tnv_ctx->dimY;
+ int dimZ = tnv_ctx->dimZ;
+ int padZ = tnv_ctx->padZ;
+ int offY = ctx->offY;
+ int stepY = ctx->stepY;
+
+// printf("%i %p - %i %i %i x %i %i\n", device_id, ctx, dimX, dimY, dimZ, offY, stepY);
+
+ long DimTotal = (long)(dimX*stepY*padZ);
+ long Dim1Total = (long)(dimX*(stepY+1)*padZ);
+ long DimRow = (long)(dimX * padZ);
+
+ // Auxiliar vectors
+ ctx->Input = malloc(Dim1Total * sizeof(float));
+ ctx->u = malloc(Dim1Total * sizeof(float));
+ ctx->qx = malloc(DimTotal * sizeof(float));
+ ctx->qy = malloc(DimTotal * sizeof(float));
+ ctx->gradx = malloc(DimTotal * sizeof(float));
+ ctx->grady = malloc(DimTotal * sizeof(float));
+ ctx->div = malloc(Dim1Total * sizeof(float));
+
+ ctx->div0 = malloc(DimRow * sizeof(float));
+ ctx->udiff0 = malloc(DimRow * sizeof(float));
+ ctx->udiff = malloc(DimRow * sizeof(float));
+
+ if ((!ctx->Input)||(!ctx->u)||(!ctx->qx)||(!ctx->qy)||(!ctx->gradx)||(!ctx->grady)||(!ctx->div)||(!ctx->div0)||(!ctx->udiff)||(!ctx->udiff0)) {
+ fprintf(stderr, "Error allocating memory\n");
+ exit(-1);
+ }
+
+ return 0;
+}
+
+static int tnv_start(HWThread thr, void *hwctx, int device_id, void *data) {
+ int i,j,k;
+ tnv_context_t *tnv_ctx = (tnv_context_t*)data;
+ tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
+
+ int dimX = tnv_ctx->dimX;
+ int dimY = tnv_ctx->dimY;
+ int dimZ = tnv_ctx->dimZ;
+ int padZ = tnv_ctx->padZ;
+ int offY = ctx->offY;
+ int stepY = ctx->stepY;
+ int copY = ctx->copY;
+
+// printf("%i %p - %i %i %i (%i) x %i %i\n", device_id, ctx, dimX, dimY, dimZ, padZ, offY, stepY);
+
+ long DimTotal = (long)(dimX*stepY*padZ);
+ long Dim1Total = (long)(dimX*copY*padZ);
+
+ memset(ctx->u, 0, Dim1Total * sizeof(float));
+ memset(ctx->qx, 0, DimTotal * sizeof(float));
+ memset(ctx->qy, 0, DimTotal * sizeof(float));
+ memset(ctx->gradx, 0, DimTotal * sizeof(float));
+ memset(ctx->grady, 0, DimTotal * sizeof(float));
+ memset(ctx->div, 0, Dim1Total * sizeof(float));
+
+ for(k=0; k<dimZ; k++) {
+ for(j=0; j<copY; j++) {
+ for(i=0; i<dimX; i++) {
+ ctx->Input[j * dimX * padZ + i * padZ + k] = tnv_ctx->InputT[k * dimX * dimY + (j + offY) * dimX + i];
+ ctx->u[j * dimX * padZ + i * padZ + k] = tnv_ctx->uT[k * dimX * dimY + (j + offY) * dimX + i];
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int tnv_finish(HWThread thr, void *hwctx, int device_id, void *data) {
+ int i,j,k;
+ tnv_context_t *tnv_ctx = (tnv_context_t*)data;
+ tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
+
+ int dimX = tnv_ctx->dimX;
+ int dimY = tnv_ctx->dimY;
+ int dimZ = tnv_ctx->dimZ;
+ int padZ = tnv_ctx->padZ;
+ int offY = ctx->offY;
+ int stepY = ctx->stepY;
+ int copY = ctx->copY;
+
+ for(k=0; k<dimZ; k++) {
+ for(j=0; j<stepY; j++) {
+ for(i=0; i<dimX; i++) {
+ tnv_ctx->uT[k * dimX * dimY + (j + offY) * dimX + i] = ctx->u[j * dimX * padZ + i * padZ + k];
+ }
+ }
+ }
+
+ return 0;
+}
+
+
+static int tnv_restore(HWThread thr, void *hwctx, int device_id, void *data) {
+ int i,j,k;
+ tnv_context_t *tnv_ctx = (tnv_context_t*)data;
+ tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
+
+ int dimX = tnv_ctx->dimX;
+ int dimY = tnv_ctx->dimY;
+ int dimZ = tnv_ctx->dimZ;
+ int stepY = ctx->stepY;
+ int copY = ctx->copY;
+ int padZ = tnv_ctx->padZ;
+ long DimTotal = (long)(dimX*stepY*padZ);
+ long Dim1Total = (long)(dimX*copY*padZ);
+
+ memset(ctx->u, 0, Dim1Total * sizeof(float));
+ memset(ctx->qx, 0, DimTotal * sizeof(float));
+ memset(ctx->qy, 0, DimTotal * sizeof(float));
+ memset(ctx->gradx, 0, DimTotal * sizeof(float));
+ memset(ctx->grady, 0, DimTotal * sizeof(float));
+ memset(ctx->div, 0, Dim1Total * sizeof(float));
+
+ return 0;
+}
+
+
+static int tnv_step(HWThread thr, void *hwctx, int device_id, void *data) {
+ long i, j, k, l, m;
+
+ tnv_context_t *tnv_ctx = (tnv_context_t*)data;
+ tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
+
+ int dimX = tnv_ctx->dimX;
+ int dimY = tnv_ctx->dimY;
+ int dimZ = tnv_ctx->dimZ;
+ int padZ = tnv_ctx->padZ;
+ int offY = ctx->offY;
+ int stepY = ctx->stepY;
+ int copY = ctx->copY;
+
+ float *Input = ctx->Input;
+ float *u = ctx->u;
+ float *qx = ctx->qx;
+ float *qy = ctx->qy;
+ float *gradx = ctx->gradx;
+ float *grady = ctx->grady;
+ float *div = ctx->div;
+
+ long p = 1l;
+ long q = 1l;
+ long r = 0l;
+
+ float lambda = tnv_ctx->lambda;
+ float sigma = tnv_ctx->sigma;
+ float tau = tnv_ctx->tau;
+ float theta = tnv_ctx->theta;
+
+ float taulambda = tau * lambda;
+ float divtau = 1.0f / tau;
+ float divsigma = 1.0f / sigma;
+ float theta1 = 1.0f + theta;
+ float constant = 1.0f + taulambda;
+
+ float resprimal = 0.0f;
+ float resdual = 0.0f;
+ float product = 0.0f;
+ float unorm = 0.0f;
+ float qnorm = 0.0f;
+
+ float qxdiff;
+ float qydiff;
+ float divdiff;
+ float gradxdiff[dimZ];
+ float gradydiff[dimZ];
+ float ubarx[dimZ];
+ float ubary[dimZ];
+ float udiff_next[dimZ];
+
+ for(i=0; i < dimX; i++) {
+ for(k = 0; k < dimZ; k++) {
+ int l = i * padZ + k;
+ float u_upd = (u[l] + tau * div[l] + taulambda * Input[l])/constant;
+ float udiff = u[l] - u_upd;
+ ctx->udiff[l] = udiff;
+ ctx->udiff0[l] = udiff;
+ ctx->div0[l] = div[l];
+ u[l] = u_upd;
+ }
+ }
+
+ for(j = 0; j < stepY; j++) {
+ for(i = 0; i < dimX; i++) {
+ float t[3];
+ float M1 = 0.0f, M2 = 0.0f, M3 = 0.0f;
+ l = (j * dimX + i) * padZ;
+ m = dimX * padZ;
+
+//#pragma unroll 64
+ for(k = 0; k < dimZ; k++) {
+ float u_upd = (u[l + k + m] + tau * div[l + k + m] + taulambda * Input[l + k + m]) / constant;
+ udiff_next[k] = u[l + k + m] - u_upd;
+ u[l + k + m] = u_upd;
+
+ float gradx_upd = (i == (dimX - 1))?0:(u[l + k + padZ] - u[l + k]);
+ float grady_upd = (j == (copY - 1))?0:(u[l + k + m] - u[l + k]);
+ gradxdiff[k] = gradx[l + k] - gradx_upd;
+ gradydiff[k] = grady[l + k] - grady_upd;
+ gradx[l + k] = gradx_upd;
+ grady[l + k] = grady_upd;
+
+ ubarx[k] = gradx_upd - theta * gradxdiff[k];
+ ubary[k] = grady_upd - theta * gradydiff[k];
+
+ float vx = ubarx[k] + divsigma * qx[l + k];
+ float vy = ubary[k] + divsigma * qy[l + k];
+
+ M1 += (vx * vx); M2 += (vx * vy); M3 += (vy * vy);
+ }
+
+ coefF(t, M1, M2, M3, sigma, p, q, r);
+
+//#pragma unroll 64
+ for(k = 0; k < dimZ; k++) {
+ float vx = ubarx[k] + divsigma * qx[l + k];
+ float vy = ubary[k] + divsigma * qy[l + k];
+ float gx_upd = vx * t[0] + vy * t[1];
+ float gy_upd = vx * t[1] + vy * t[2];
+
+ qxdiff = sigma * (ubarx[k] - gx_upd);
+ qydiff = sigma * (ubary[k] - gy_upd);
+
+ qx[l + k] += qxdiff;
+ qy[l + k] += qydiff;
+
+ float udiff = ctx->udiff[i * padZ + k];
+ ctx->udiff[i * padZ + k] = udiff_next[k];
+ unorm += (udiff * udiff);
+ qnorm += (qxdiff * qxdiff + qydiff * qydiff);
+
+ float div_upd = 0;
+ div_upd -= (i > 0)?qx[l + k - padZ]:0;
+ div_upd -= (j > 0)?qy[l + k - m]:0;
+ div_upd += (i < (dimX-1))?qx[l + k]:0;
+ div_upd += (j < (copY-1))?qy[l + k]:0;
+ divdiff = div[l + k] - div_upd;
+ div[l + k] = div_upd;
+
+ resprimal += ((offY == 0)||(j > 0))?fabs(divtau * udiff + divdiff):0;
+ resdual += fabs(divsigma * qxdiff + gradxdiff[k]);
+ resdual += fabs(divsigma * qydiff + gradydiff[k]);
+ product -= (gradxdiff[k] * qxdiff + gradydiff[k] * qydiff);
+ }
+
+ } // i
+ } // j
+
+
+ ctx->resprimal = resprimal;
+ ctx->resdual = resdual;
+ ctx->product = product;
+ ctx->unorm = unorm;
+ ctx->qnorm = qnorm;
+
+ return 0;
+}
+
+static void TNV_CPU_init(float *InputT, float *uT, int dimX, int dimY, int dimZ) {
+ int i, off, size, err;
+
+ if (sched) return;
+
+ tnv_ctx.dimX = dimX;
+ tnv_ctx.dimY = dimY;
+ tnv_ctx.dimZ = dimZ;
+ // Padding seems actually slower
+// tnv_ctx.padZ = 64 * ((dimZ / 64) + ((dimZ % 64)?1:0));
+ tnv_ctx.padZ = dimZ;
+
+ hw_sched_init();
+
+ int threads = hw_sched_get_cpu_count();
+ if (threads > dimY) threads = dimY/2;
+
+ int step = dimY / threads;
+ int extra = dimY % threads;
+
+ tnv_ctx.threads = threads;
+ tnv_ctx.thr_ctx = (tnv_thread_t*)calloc(threads, sizeof(tnv_thread_t));
+ for (i = 0, off = 0; i < threads; i++, off += size) {
+ tnv_thread_t *ctx = tnv_ctx.thr_ctx + i;
+ size = step + ((i < extra)?1:0);
+
+ ctx->offY = off;
+ ctx->stepY = size;
+
+ if (i == (threads-1)) ctx->copY = ctx->stepY;
+ else ctx->copY = ctx->stepY + 1;
+ }
+
+ sched = hw_sched_create(threads);
+ if (!sched) { fprintf(stderr, "Error creating threads\n"); exit(-1); }
+
+ err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_init);
+ if (!err) err = hw_sched_wait_task(sched);
+ if (err) { fprintf(stderr, "Error %i scheduling init threads", err); exit(-1); }
+}
+
+
+
/*
* C-OMP implementation of Total Nuclear Variation regularisation model (2D + channels) [1]
* The code is modified from the implementation by Joan Duran <joan.duran@uib.es> see
@@ -32,50 +499,25 @@
* 5. print information: 0 (off) or 1 (on) [OPTIONAL parameter]
*
* Output:
- * 1. Filtered/regularized image
+ * 1. Filtered/regularized image (u)
*
* [1]. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.
*/
-float TNV_CPU_main(float *Input, float *u, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ)
+float TNV_CPU_main(float *InputT, float *uT, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ)
{
- long k, p, q, r, DimTotal;
- float taulambda;
- float *u_upd, *gx, *gy, *gx_upd, *gy_upd, *qx, *qy, *qx_upd, *qy_upd, *v, *vx, *vy, *gradx, *grady, *gradx_upd, *grady_upd, *gradx_ubar, *grady_ubar, *div, *div_upd;
-
- p = 1l;
- q = 1l;
- r = 0l;
-
+ int err;
+ int iter;
+ int i,j,k,l,m;
+
lambda = 1.0f/(2.0f*lambda);
- DimTotal = (long)(dimX*dimY*dimZ);
- /* PDHG algorithm parameters*/
+ tnv_ctx.lambda = lambda;
+
+ // PDHG algorithm parameters
float tau = 0.5f;
float sigma = 0.5f;
float theta = 1.0f;
-
- // Auxiliar vectors
- u_upd = calloc(DimTotal, sizeof(float));
- gx = calloc(DimTotal, sizeof(float));
- gy = calloc(DimTotal, sizeof(float));
- gx_upd = calloc(DimTotal, sizeof(float));
- gy_upd = calloc(DimTotal, sizeof(float));
- qx = calloc(DimTotal, sizeof(float));
- qy = calloc(DimTotal, sizeof(float));
- qx_upd = calloc(DimTotal, sizeof(float));
- qy_upd = calloc(DimTotal, sizeof(float));
- v = calloc(DimTotal, sizeof(float));
- vx = calloc(DimTotal, sizeof(float));
- vy = calloc(DimTotal, sizeof(float));
- gradx = calloc(DimTotal, sizeof(float));
- grady = calloc(DimTotal, sizeof(float));
- gradx_upd = calloc(DimTotal, sizeof(float));
- grady_upd = calloc(DimTotal, sizeof(float));
- gradx_ubar = calloc(DimTotal, sizeof(float));
- grady_ubar = calloc(DimTotal, sizeof(float));
- div = calloc(DimTotal, sizeof(float));
- div_upd = calloc(DimTotal, sizeof(float));
-
+
// Backtracking parameters
float s = 1.0f;
float gamma = 0.75f;
@@ -84,369 +526,117 @@ float TNV_CPU_main(float *Input, float *u, float lambda, int maxIter, float tol,
float alpha = alpha0;
float delta = 1.5f;
float eta = 0.95f;
+
+ TNV_CPU_init(InputT, uT, dimX, dimY, dimZ);
+
+ tnv_ctx.InputT = InputT;
+ tnv_ctx.uT = uT;
- // PDHG algorithm parameters
- taulambda = tau * lambda;
- float divtau = 1.0f / tau;
- float divsigma = 1.0f / sigma;
- float theta1 = 1.0f + theta;
-
- /*allocate memory for taulambda */
- //taulambda = (float*) calloc(dimZ, sizeof(float));
- //for(k=0; k < dimZ; k++) {taulambda[k] = tau*lambda[k];}
-
+ int padZ = tnv_ctx.padZ;
+
+ err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_start);
+ if (!err) err = hw_sched_wait_task(sched);
+ if (err) { fprintf(stderr, "Error %i scheduling start threads", err); exit(-1); }
+
+
// Apply Primal-Dual Hybrid Gradient scheme
- int iter = 0;
float residual = fLarge;
- float ubarx, ubary;
-
+ int started = 0;
for(iter = 0; iter < maxIter; iter++) {
- // Argument of proximal mapping of fidelity term
-#pragma omp parallel for shared(v, u) private(k)
- for(k=0; k<dimX*dimY*dimZ; k++) {v[k] = u[k] + tau*div[k];}
-
-// Proximal solution of fidelity term
-proxG(u_upd, v, Input, taulambda, (long)(dimX), (long)(dimY), (long)(dimZ));
-
-// Gradient of updated primal variable
-gradient(u_upd, gradx_upd, grady_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
-
-// Argument of proximal mapping of regularization term
-#pragma omp parallel for shared(gradx_upd, grady_upd, gradx, grady) private(k, ubarx, ubary)
-for(k=0; k<dimX*dimY*dimZ; k++) {
- ubarx = theta1 * gradx_upd[k] - theta * gradx[k];
- ubary = theta1 * grady_upd[k] - theta * grady[k];
- vx[k] = ubarx + divsigma * qx[k];
- vy[k] = ubary + divsigma * qy[k];
- gradx_ubar[k] = ubarx;
- grady_ubar[k] = ubary;
-}
+ float resprimal = 0.0f;
+ float resdual = 0.0f;
+ float product = 0.0f;
+ float unorm = 0.0f;
+ float qnorm = 0.0f;
-proxF(gx_upd, gy_upd, vx, vy, sigma, p, q, r, (long)(dimX), (long)(dimY), (long)(dimZ));
+ float divtau = 1.0f / tau;
-// Update dual variable
-#pragma omp parallel for shared(qx_upd, qy_upd) private(k)
-for(k=0; k<dimX*dimY*dimZ; k++) {
- qx_upd[k] = qx[k] + sigma * (gradx_ubar[k] - gx_upd[k]);
- qy_upd[k] = qy[k] + sigma * (grady_ubar[k] - gy_upd[k]);
-}
+ tnv_ctx.sigma = sigma;
+ tnv_ctx.tau = tau;
+ tnv_ctx.theta = theta;
-// Divergence of updated dual variable
-#pragma omp parallel for shared(div_upd) private(k)
-for(k=0; k<dimX*dimY*dimZ; k++) {div_upd[k] = 0.0f;}
-divergence(qx_upd, qy_upd, div_upd, dimX, dimY, dimZ);
-
-// Compute primal residual, dual residual, and backtracking condition
-float resprimal = 0.0f;
-float resdual = 0.0f;
-float product = 0.0f;
-float unorm = 0.0f;
-float qnorm = 0.0f;
-
-for(k=0; k<dimX*dimY*dimZ; k++) {
- float udiff = u[k] - u_upd[k];
- float qxdiff = qx[k] - qx_upd[k];
- float qydiff = qy[k] - qy_upd[k];
- float divdiff = div[k] - div_upd[k];
- float gradxdiff = gradx[k] - gradx_upd[k];
- float gradydiff = grady[k] - grady_upd[k];
-
- resprimal += fabs(divtau*udiff + divdiff);
- resdual += fabs(divsigma*qxdiff - gradxdiff);
- resdual += fabs(divsigma*qydiff - gradydiff);
-
- unorm += (udiff * udiff);
- qnorm += (qxdiff * qxdiff + qydiff * qydiff);
- product += (gradxdiff * qxdiff + gradydiff * qydiff);
-}
+ err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_step);
+ if (!err) err = hw_sched_wait_task(sched);
+ if (err) { fprintf(stderr, "Error %i scheduling tnv threads", err); exit(-1); }
-float b = (2.0f * tau * sigma * product) / (gamma * sigma * unorm +
- gamma * tau * qnorm);
+ // border regions
+ for (j = 1; j < tnv_ctx.threads; j++) {
+ tnv_thread_t *ctx0 = tnv_ctx.thr_ctx + (j - 1);
+ tnv_thread_t *ctx = tnv_ctx.thr_ctx + j;
-// Adapt step-size parameters
-float dual_dot_delta = resdual * s * delta;
-float dual_div_delta = (resdual * s) / delta;
+ m = (ctx0->stepY - 1) * dimX * padZ;
+ for(i = 0; i < dimX; i++) {
+ for(k = 0; k < dimZ; k++) {
+ int l = i * padZ + k;
+
+ float divdiff = ctx->div0[l] - ctx->div[l];
+ float udiff = ctx->udiff0[l];
-if(b > 1)
-{
- // Decrease step-sizes to fit balancing principle
- tau = (beta * tau) / b;
- sigma = (beta * sigma) / b;
- alpha = alpha0;
-
- copyIm(u, u_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(gx, gx_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(gy, gy_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(qx, qx_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(qy, qy_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(gradx, gradx_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(grady, grady_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(div, div_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
-
-} else if(resprimal > dual_dot_delta)
-{
- // Increase primal step-size and decrease dual step-size
- tau = tau / (1.0f - alpha);
- sigma = sigma * (1.0f - alpha);
- alpha = alpha * eta;
-
-} else if(resprimal < dual_div_delta)
-{
- // Decrease primal step-size and increase dual step-size
- tau = tau * (1.0f - alpha);
- sigma = sigma / (1.0f - alpha);
- alpha = alpha * eta;
-}
+ ctx->div[l] -= ctx0->qy[l + m];
+ ctx0->div[m + l + dimX*padZ] = ctx->div[l];
+
+ divdiff += ctx0->qy[l + m];
+ resprimal += fabs(divtau * udiff + divdiff);
+ }
+ }
+ }
-// Update variables
-taulambda = tau * lambda;
-//for(k=0; k < dimZ; k++) taulambda[k] = tau*lambda[k];
+ for (j = 0; j < tnv_ctx.threads; j++) {
+ tnv_thread_t *ctx = tnv_ctx.thr_ctx + j;
+ resprimal += ctx->resprimal;
+ resdual += ctx->resdual;
+ product += ctx->product;
+ unorm += ctx->unorm;
+ qnorm += ctx->qnorm;
+ }
-divsigma = 1.0f / sigma;
-divtau = 1.0f / tau;
+ residual = (resprimal + resdual) / ((float) (dimX*dimY*dimZ));
+ float b = (2.0f * tau * sigma * product) / (gamma * sigma * unorm + gamma * tau * qnorm);
+ float dual_dot_delta = resdual * s * delta;
+ float dual_div_delta = (resdual * s) / delta;
+ printf("resprimal: %f, resdual: %f, b: %f (product: %f, unorm: %f, qnorm: %f)\n", resprimal, resdual, b, product, unorm, qnorm);
-copyIm(u_upd, u, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(gx_upd, gx, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(gy_upd, gy, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(qx_upd, qx, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(qy_upd, qy, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(gradx_upd, gradx, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(grady_upd, grady, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(div_upd, div, (long)(dimX), (long)(dimY), (long)(dimZ));
-// Compute residual at current iteration
-residual = (resprimal + resdual) / ((float) (dimX*dimY*dimZ));
+ if(b > 1) {
+
+ // Decrease step-sizes to fit balancing principle
+ tau = (beta * tau) / b;
+ sigma = (beta * sigma) / b;
+ alpha = alpha0;
-// printf("%f \n", residual);
-if (residual < tol) {
- printf("Iterations stopped at %i with the residual %f \n", iter, residual);
- break; }
+ if (started) {
+ fprintf(stderr, "\n\n\nWARNING: Back-tracking is required in the middle of iterative optimization! We CAN'T do it in the fast version. The standard TNV recommended\n\n\n");
+ } else {
+ err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_restore);
+ if (!err) err = hw_sched_wait_task(sched);
+ if (err) { fprintf(stderr, "Error %i scheduling restore threads", err); exit(-1); }
+ }
+ } else {
+ started = 1;
+ if(resprimal > dual_dot_delta) {
+ // Increase primal step-size and decrease dual step-size
+ tau = tau / (1.0f - alpha);
+ sigma = sigma * (1.0f - alpha);
+ alpha = alpha * eta;
+ } else if(resprimal < dual_div_delta) {
+ // Decrease primal step-size and increase dual step-size
+ tau = tau * (1.0f - alpha);
+ sigma = sigma / (1.0f - alpha);
+ alpha = alpha * eta;
+ }
+ }
+ if (residual < tol) break;
}
- printf("Iterations stopped at %i with the residual %f \n", iter, residual);
- free (u_upd); free(gx); free(gy); free(gx_upd); free(gy_upd);
- free(qx); free(qy); free(qx_upd); free(qy_upd); free(v); free(vx); free(vy);
- free(gradx); free(grady); free(gradx_upd); free(grady_upd); free(gradx_ubar);
- free(grady_ubar); free(div); free(div_upd);
- return *u;
-}
-float proxG(float *u_upd, float *v, float *f, float taulambda, long dimX, long dimY, long dimZ)
-{
- float constant;
- long k;
- constant = 1.0f + taulambda;
-#pragma omp parallel for shared(v, f, u_upd) private(k)
- for(k=0; k<dimZ*dimX*dimY; k++) {
- u_upd[k] = (v[k] + taulambda * f[k])/constant;
- //u_upd[(dimX*dimY)*k + l] = (v[(dimX*dimY)*k + l] + taulambda * f[(dimX*dimY)*k + l])/constant;
- }
- return *u_upd;
-}
+ err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_finish);
+ if (!err) err = hw_sched_wait_task(sched);
+ if (err) { fprintf(stderr, "Error %i scheduling finish threads", err); exit(-1); }
-float gradient(float *u_upd, float *gradx_upd, float *grady_upd, long dimX, long dimY, long dimZ)
-{
- long i, j, k, l;
- // Compute discrete gradient using forward differences
-#pragma omp parallel for shared(gradx_upd,grady_upd,u_upd) private(i, j, k, l)
- for(k = 0; k < dimZ; k++) {
- for(j = 0; j < dimY; j++) {
- l = j * dimX;
- for(i = 0; i < dimX; i++) {
- // Derivatives in the x-direction
- if(i != dimX-1)
- gradx_upd[(dimX*dimY)*k + i+l] = u_upd[(dimX*dimY)*k + i+1+l] - u_upd[(dimX*dimY)*k + i+l];
- else
- gradx_upd[(dimX*dimY)*k + i+l] = 0.0f;
-
- // Derivatives in the y-direction
- if(j != dimY-1)
- //grady_upd[(dimX*dimY)*k + i+l] = u_upd[(dimX*dimY)*k + i+dimY+l] -u_upd[(dimX*dimY)*k + i+l];
- grady_upd[(dimX*dimY)*k + i+l] = u_upd[(dimX*dimY)*k + i+(j+1)*dimX] -u_upd[(dimX*dimY)*k + i+l];
- else
- grady_upd[(dimX*dimY)*k + i+l] = 0.0f;
- }}}
- return 1;
-}
-float proxF(float *gx, float *gy, float *vx, float *vy, float sigma, int p, int q, int r, long dimX, long dimY, long dimZ)
-{
- // (S^p, \ell^1) norm decouples at each pixel
-// Spl1(gx, gy, vx, vy, sigma, p, num_channels, dim);
- float divsigma = 1.0f / sigma;
-
- // $\ell^{1,1,1}$-TV regularization
-// int i,j,k;
-// #pragma omp parallel for shared (gx,gy,vx,vy) private(i,j,k)
-// for(k = 0; k < dimZ; k++) {
-// for(i=0; i<dimX; i++) {
-// for(j=0; j<dimY; j++) {
-// gx[(dimX*dimY)*k + (i)*dimY + (j)] = SIGN(vx[(dimX*dimY)*k + (i)*dimY + (j)]) * MAX(fabs(vx[(dimX*dimY)*k + (i)*dimY + (j)]) - divsigma, 0.0f);
-// gy[(dimX*dimY)*k + (i)*dimY + (j)] = SIGN(vy[(dimX*dimY)*k + (i)*dimY + (j)]) * MAX(fabs(vy[(dimX*dimY)*k + (i)*dimY + (j)]) - divsigma, 0.0f);
-// }}}
-
- // Auxiliar vector
- float *proj, sum, shrinkfactor ;
- float M1,M2,M3,valuex,valuey,T,D,det,eig1,eig2,sig1,sig2,V1, V2, V3, V4, v0,v1,v2, mu1,mu2,sig1_upd,sig2_upd,t1,t2,t3;
- long i,j,k, ii, num;
-#pragma omp parallel for shared (gx,gy,vx,vy,p) private(i,ii,j,k,proj,num, sum, shrinkfactor, M1,M2,M3,valuex,valuey,T,D,det,eig1,eig2,sig1,sig2,V1, V2, V3, V4,v0,v1,v2,mu1,mu2,sig1_upd,sig2_upd,t1,t2,t3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
-
- proj = (float*) calloc (2,sizeof(float));
- // Compute matrix $M\in\R^{2\times 2}$
- M1 = 0.0f;
- M2 = 0.0f;
- M3 = 0.0f;
-
- for(k = 0; k < dimZ; k++)
- {
- valuex = vx[(dimX*dimY)*k + (j)*dimX + (i)];
- valuey = vy[(dimX*dimY)*k + (j)*dimX + (i)];
-
- M1 += (valuex * valuex);
- M2 += (valuex * valuey);
- M3 += (valuey * valuey);
- }
-
- // Compute eigenvalues of M
- T = M1 + M3;
- D = M1 * M3 - M2 * M2;
- det = sqrt(MAX((T * T / 4.0f) - D, 0.0f));
- eig1 = MAX((T / 2.0f) + det, 0.0f);
- eig2 = MAX((T / 2.0f) - det, 0.0f);
- sig1 = sqrt(eig1);
- sig2 = sqrt(eig2);
-
- // Compute normalized eigenvectors
- V1 = V2 = V3 = V4 = 0.0f;
-
- if(M2 != 0.0f)
- {
- v0 = M2;
- v1 = eig1 - M3;
- v2 = eig2 - M3;
-
- mu1 = sqrtf(v0 * v0 + v1 * v1);
- mu2 = sqrtf(v0 * v0 + v2 * v2);
-
- if(mu1 > fTiny)
- {
- V1 = v1 / mu1;
- V3 = v0 / mu1;
- }
-
- if(mu2 > fTiny)
- {
- V2 = v2 / mu2;
- V4 = v0 / mu2;
- }
-
- } else
- {
- if(M1 > M3)
- {
- V1 = V4 = 1.0f;
- V2 = V3 = 0.0f;
-
- } else
- {
- V1 = V4 = 0.0f;
- V2 = V3 = 1.0f;
- }
- }
-
- // Compute prox_p of the diagonal entries
- sig1_upd = sig2_upd = 0.0f;
-
- if(p == 1)
- {
- sig1_upd = MAX(sig1 - divsigma, 0.0f);
- sig2_upd = MAX(sig2 - divsigma, 0.0f);
-
- } else if(p == INFNORM)
- {
- proj[0] = sigma * fabs(sig1);
- proj[1] = sigma * fabs(sig2);
-
- /*l1 projection part */
- sum = fLarge;
- num = 0l;
- shrinkfactor = 0.0f;
- while(sum > 1.0f)
- {
- sum = 0.0f;
- num = 0;
-
- for(ii = 0; ii < 2; ii++)
- {
- proj[ii] = MAX(proj[ii] - shrinkfactor, 0.0f);
-
- sum += fabs(proj[ii]);
- if(proj[ii]!= 0.0f)
- num++;
- }
-
- if(num > 0)
- shrinkfactor = (sum - 1.0f) / num;
- else
- break;
- }
- /*l1 proj ends*/
-
- sig1_upd = sig1 - divsigma * proj[0];
- sig2_upd = sig2 - divsigma * proj[1];
- }
-
- // Compute the diagonal entries of $\widehat{\Sigma}\Sigma^{\dagger}_0$
- if(sig1 > fTiny)
- sig1_upd /= sig1;
-
- if(sig2 > fTiny)
- sig2_upd /= sig2;
-
- // Compute solution
- t1 = sig1_upd * V1 * V1 + sig2_upd * V2 * V2;
- t2 = sig1_upd * V1 * V3 + sig2_upd * V2 * V4;
- t3 = sig1_upd * V3 * V3 + sig2_upd * V4 * V4;
-
- for(k = 0; k < dimZ; k++)
- {
- gx[(dimX*dimY)*k + j*dimX + i] = vx[(dimX*dimY)*k + j*dimX + i] * t1 + vy[(dimX*dimY)*k + j*dimX + i] * t2;
- gy[(dimX*dimY)*k + j*dimX + i] = vx[(dimX*dimY)*k + j*dimX + i] * t2 + vy[(dimX*dimY)*k + j*dimX + i] * t3;
- }
-
- // Delete allocated memory
- free(proj);
- }}
-
- return 1;
-}
+ printf("Iterations stopped at %i with the residual %f \n", iter, residual);
+ printf("Return: %f\n", *uT);
-float divergence(float *qx_upd, float *qy_upd, float *div_upd, long dimX, long dimY, long dimZ)
-{
- long i, j, k, l;
-#pragma omp parallel for shared(qx_upd,qy_upd,div_upd) private(i, j, k, l)
- for(k = 0; k < dimZ; k++) {
- for(j = 0; j < dimY; j++) {
- l = j * dimX;
- for(i = 0; i < dimX; i++) {
- if(i != dimX-1)
- {
- // ux[k][i+l] = u[k][i+1+l] - u[k][i+l]
- div_upd[(dimX*dimY)*k + i+1+l] -= qx_upd[(dimX*dimY)*k + i+l];
- div_upd[(dimX*dimY)*k + i+l] += qx_upd[(dimX*dimY)*k + i+l];
- }
-
- if(j != dimY-1)
- {
- // uy[k][i+l] = u[k][i+width+l] - u[k][i+l]
- //div_upd[(dimX*dimY)*k + i+dimY+l] -= qy_upd[(dimX*dimY)*k + i+l];
- div_upd[(dimX*dimY)*k + i+(j+1)*dimX] -= qy_upd[(dimX*dimY)*k + i+l];
- div_upd[(dimX*dimY)*k + i+l] += qy_upd[(dimX*dimY)*k + i+l];
- }
- }
- }
- }
- return *div_upd;
+// exit(-1);
+ return *uT;
}