// // File: fft_execute.cpp // // Version: <1.0> // // Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple") // in consideration of your agreement to the following terms, and your use, // installation, modification or redistribution of this Apple software // constitutes acceptance of these terms. If you do not agree with these // terms, please do not use, install, modify or redistribute this Apple // software.¬ // // In consideration of your agreement to abide by the following terms, and // subject to these terms, Apple grants you a personal, non - exclusive // license, under Apple's copyrights in this original Apple software ( the // "Apple Software" ), to use, reproduce, modify and redistribute the Apple // Software, with or without modifications, in source and / or binary forms; // provided that if you redistribute the Apple Software in its entirety and // without modifications, you must retain this notice and the following text // and disclaimers in all such redistributions of the Apple Software. Neither // the name, trademarks, service marks or logos of Apple Inc. may be used to // endorse or promote products derived from the Apple Software without specific // prior written permission from Apple. Except as expressly stated in this // notice, no other rights or licenses, express or implied, are granted by // Apple herein, including but not limited to any patent rights that may be // infringed by your derivative works or by other works in which the Apple // Software may be incorporated. // // The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO // WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED // WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION // ALONE OR IN COMBINATION WITH YOUR PRODUCTS. // // IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR // CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION // AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER // UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR // OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright ( C ) 2008 Apple Inc. All Rights Reserved. // //////////////////////////////////////////////////////////////////////////////////////////////////// #include "fft_internal.h" #include "oclFFT.h" #include #include #include #define max(a,b) (((a)>(b)) ? (a) : (b)) #define min(a,b) (((a)<(b)) ? (a) : (b)) static cl_int allocateTemporaryBufferInterleaved(cl_fft_plan *plan, cl_uint batchSize) { cl_int err = CL_SUCCESS; if(plan->temp_buffer_needed && plan->last_batch_size != batchSize) { plan->last_batch_size = batchSize; size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * 2 * sizeof(cl_float); if(plan->tempmemobj) clReleaseMemObject(plan->tempmemobj); plan->tempmemobj = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err); } return err; } static cl_int allocateTemporaryBufferPlannar(cl_fft_plan *plan, cl_uint batchSize) { cl_int err = CL_SUCCESS; cl_int terr; if(plan->temp_buffer_needed && plan->last_batch_size != batchSize) { plan->last_batch_size = batchSize; size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * sizeof(cl_float); if(plan->tempmemobj_real) clReleaseMemObject(plan->tempmemobj_real); if(plan->tempmemobj_imag) clReleaseMemObject(plan->tempmemobj_imag); plan->tempmemobj_real = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err); plan->tempmemobj_imag = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &terr); err |= terr; } return err; } void getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems) { *lWorkItems = kernelInfo->num_workitems_per_workgroup; int numWorkGroups = kernelInfo->num_workgroups; int numXFormsPerWG = kernelInfo->num_xforms_per_workgroup; switch(kernelInfo->dir) { case cl_fft_kernel_x: *batchSize *= (plan->n.y * plan->n.z); numWorkGroups = (*batchSize % numXFormsPerWG) ? (*batchSize/numXFormsPerWG + 1) : (*batchSize/numXFormsPerWG); numWorkGroups *= kernelInfo->num_workgroups; break; case cl_fft_kernel_y: *batchSize *= plan->n.z; numWorkGroups *= *batchSize; break; case cl_fft_kernel_z: numWorkGroups *= *batchSize; break; } *gWorkItems = numWorkGroups * *lWorkItems; } cl_int clFFT_ExecuteInterleaved( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir, cl_mem data_in, cl_mem data_out, cl_int num_events, cl_event *event_list, cl_event *event) { return clFFT_ExecuteInterleaved_Ufo(queue, Plan, batchSize, dir, data_in, data_out, num_events, event_list, event, NULL); } cl_int clFFT_ExecuteInterleaved_Ufo( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir, cl_mem data_in, cl_mem data_out, cl_int num_events, cl_event *event_list, cl_event *event, UfoProfiler *profiler) { int s; cl_fft_plan *plan = (cl_fft_plan *) Plan; if(plan->format != clFFT_InterleavedComplexFormat) return CL_INVALID_VALUE; cl_int err; size_t gWorkItems, lWorkItems; int inPlaceDone; cl_int isInPlace = data_in == data_out ? 1 : 0; if((err = allocateTemporaryBufferInterleaved(plan, batchSize)) != CL_SUCCESS) return err; cl_mem memObj[3]; memObj[0] = data_in; memObj[1] = data_out; memObj[2] = plan->tempmemobj; cl_fft_kernel_info *kernelInfo = plan->kernel_info; int numKernels = plan->num_kernels; int numKernelsOdd = numKernels & 1; int currRead = 0; int currWrite = 1; // at least one external dram shuffle (transpose) required if(plan->temp_buffer_needed) { // in-place transform if(isInPlace) { inPlaceDone = 0; currRead = 1; currWrite = 2; } else { currWrite = (numKernels & 1) ? 1 : 2; } while(kernelInfo) { if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible) { currWrite = currRead; inPlaceDone = 1; } s = batchSize; getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems); err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]); err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]); err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir); err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s); if (profiler) ufo_profiler_call (profiler, queue, kernelInfo->kernel, 1, &gWorkItems, &lWorkItems); else err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, num_events, event_list, event); if(err) return err; currRead = (currWrite == 1) ? 1 : 2; currWrite = (currWrite == 1) ? 2 : 1; kernelInfo = kernelInfo->next; } } // no dram shuffle (transpose required) transform // all kernels can execute in-place. else { while(kernelInfo) { s = batchSize; getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems); err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]); err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]); err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir); err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s); if (profiler) ufo_profiler_call (profiler, queue, kernelInfo->kernel, 1, &gWorkItems, &lWorkItems); else err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, num_events, event_list, event); if(err) return err; currRead = 1; currWrite = 1; kernelInfo = kernelInfo->next; } } return err; } cl_int clFFT_ExecutePlannar( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir, cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag, cl_int num_events, cl_event *event_list, cl_event *event) { return clFFT_ExecutePlannar_Ufo(queue, Plan, batchSize, dir, data_in_real, data_in_imag, data_out_real, data_out_imag, num_events, event_list, event, NULL); } cl_int clFFT_ExecutePlannar_Ufo( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir, cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag, cl_int num_events, cl_event *event_list, cl_event *event, UfoProfiler *profiler) { int s; cl_fft_plan *plan = (cl_fft_plan *) Plan; if(plan->format != clFFT_SplitComplexFormat) return CL_INVALID_VALUE; cl_int err; size_t gWorkItems, lWorkItems; int inPlaceDone; cl_int isInPlace = ((data_in_real == data_out_real) && (data_in_imag == data_out_imag)) ? 1 : 0; if((err = allocateTemporaryBufferPlannar(plan, batchSize)) != CL_SUCCESS) return err; cl_mem memObj_real[3]; cl_mem memObj_imag[3]; memObj_real[0] = data_in_real; memObj_real[1] = data_out_real; memObj_real[2] = plan->tempmemobj_real; memObj_imag[0] = data_in_imag; memObj_imag[1] = data_out_imag; memObj_imag[2] = plan->tempmemobj_imag; cl_fft_kernel_info *kernelInfo = plan->kernel_info; int numKernels = plan->num_kernels; int numKernelsOdd = numKernels & 1; int currRead = 0; int currWrite = 1; // at least one external dram shuffle (transpose) required if(plan->temp_buffer_needed) { // in-place transform if(isInPlace) { inPlaceDone = 0; currRead = 1; currWrite = 2; } else { currWrite = (numKernels & 1) ? 1 : 2; } while(kernelInfo) { if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible) { currWrite = currRead; inPlaceDone = 1; } s = batchSize; getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems); err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]); err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]); err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]); err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]); err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir); err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s); if (profiler) ufo_profiler_call (profiler, queue, kernelInfo->kernel, 1, &gWorkItems, &lWorkItems); else err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, num_events, event_list, event); if(err) return err; currRead = (currWrite == 1) ? 1 : 2; currWrite = (currWrite == 1) ? 2 : 1; kernelInfo = kernelInfo->next; } } // no dram shuffle (transpose required) transform else { while(kernelInfo) { s = batchSize; getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems); err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]); err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]); err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]); err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]); err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir); err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s); if (profiler) ufo_profiler_call (profiler, queue, kernelInfo->kernel, 1, &gWorkItems, &lWorkItems); else err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, num_events, event_list, event); if(err) return err; currRead = 1; currWrite = 1; kernelInfo = kernelInfo->next; } } return err; } cl_int clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array, size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir) { return clFFT_1DTwistInterleaved_Ufo(Plan, queue, array, numRows, numCols, startRow, rowsToProcess, dir, NULL); } cl_int clFFT_1DTwistInterleaved_Ufo(clFFT_Plan Plan, cl_command_queue queue, cl_mem array, size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir, UfoProfiler *profiler) { cl_fft_plan *plan = (cl_fft_plan *) Plan; unsigned int N = numRows*numCols; unsigned int nCols = numCols; unsigned int sRow = startRow; unsigned int rToProcess = rowsToProcess; int d = dir; int err = 0; cl_device_id device_id; err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL); if(err) return err; size_t gSize; err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL); if(err) return err; gSize = min(128, gSize); size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize }; size_t numLocalThreads[1] = { gSize }; err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array); err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(unsigned int), &sRow); err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &nCols); err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &N); err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &rToProcess); err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(int), &d); if (profiler) ufo_profiler_call (profiler, queue, plan->twist_kernel, 1, numGlobalThreads, numLocalThreads); else err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL); return err; } cl_int clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag, size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir) { return clFFT_1DTwistPlannar_Ufo(Plan, queue, array_real, array_imag, numRows, numCols, startRow, rowsToProcess, dir, NULL); } cl_int clFFT_1DTwistPlannar_Ufo(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag, size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir, UfoProfiler *profiler) { cl_fft_plan *plan = (cl_fft_plan *) Plan; unsigned int N = numRows*numCols; unsigned int nCols = numCols; unsigned int sRow = startRow; unsigned int rToProcess = rowsToProcess; int d = dir; int err = 0; cl_device_id device_id; err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL); if(err) return err; size_t gSize; err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL); if(err) return err; gSize = min(128, gSize); size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize }; size_t numLocalThreads[1] = { gSize }; err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array_real); err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(cl_mem), &array_imag); err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &sRow); err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &nCols); err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &N); err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(unsigned int), &rToProcess); err |= clSetKernelArg(plan->twist_kernel, 6, sizeof(int), &d); if (profiler) ufo_profiler_call (profiler, queue, plan->twist_kernel, 1, numGlobalThreads, numLocalThreads); else err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL); return err; }